Skip to main content
 

MATH31120: Quantum Mechanics

It is possible that changes to modules or programmes might need to be made during the academic year, in response to the impact of Covid-19 and/or any further changes in public health advice.

Type Tied
Level 3
Credits 20
Availability Available in 2024/2025
Module Cap None.
Location Durham
Department Mathematical Sciences

Prerequisites

  • Analysis in Many Variables and Mathematical Physics

Corequisites

  • None

Excluded Combinations of Modules

  • Advanced Quantum Theory

Aims

  • To give an understanding of the reasons why quantum theory is required, to explain its basic formalism and how this can be applied to simple situations, to show the power in quantum theory over a range of physical phenomena and to introduce students to some of the deep conceptual issues it raises.

Content

  • Problems with Classical Physics: Photo-electric effect, atomic spectra, wave-particle duality.
  • Waves and the Schrodinger Equation.
  • Formal Quantum Theory: Vectors, linear operators, hermitian operators, eigenvalues, complete sets, expectation
  • values, commutation relations, Schrodinger representations.
  • Applications in one-dimension.
  • Angular Momentum: Commutation relations, eigenvalues, states, relation to spherical harmonics.
  • Hydrogen Atom.
  • Symmetry, Antisymmetry and Exclusion Principle.
  • Conceptual Issues.
  • Approximation Methods: Peturbation Theory.

Learning Outcomes

Subject-specific Knowledge:

  • By the end of the module students will: be able to solve novel and/or complex problems in Quantum Mechanics.
  • have a systematic and coherent understanding of theoretical mathematics in the fields Quantum Mechanics.
  • have acquired coherent body of knowledge of these subjects demonstrated through one or more of the following topic areas: Description of physical system in terms of state vectors.
  • Description of observables using linear hermitian operators.
  • Schrodinger equation for time evolution of system.
  • Representation of states and operators as wave functions and differential operators.
  • Relating formal theory to experimental measurements.
  • Important examples including harmonic oscillator, 1D scattering and hydrogen atom.

Subject-specific Skills:

  • In addition students will have specialised mathematical skills in the following areas which can be used in minimal guidance: Modelling.

Key Skills:

Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module

  • Lectures demonstrate what is required to be learned and the application of the theory to practical examples.
  • Assignments for self-study develop problem-solving skills and enable students to test and develop their knowledge and understanding.
  • Formatively assessed assignments provide practice in the application of logic and high level of rigour as well as feedback for the students and the lecturer on students' progress.
  • The end-of-year examination assesses the knowledge acquired and the ability to solve predictable and unpredictable problems.

Teaching Methods and Learning Hours

ActivityNumberFrequencyDurationTotalMonitored
Lectures422 per week for 20 weeks and 2 in term 31 Hour42 
Problems Classes8four in each of terms 1 and 21 Hour8 
Preparation and Reading150 
Total200 

Summative Assessment

Component: ExaminationComponent Weighting: 100%
ElementLength / DurationElement WeightingResit Opportunity
Written examination3 hours100 

Formative Assessment

Eight written or electronic assignments to be assessed and returned. Other assignments are set for self-study and complete solutions are made available to students.

More information

If you have a question about Durham's modular degree programmes, please visit our Help page. If you have a question about modular programmes that is not covered by the Help page, or a query about the on-line Postgraduate Module Handbook, please contact us.

Prospective Students: If you have a query about a specific module or degree programme, please Ask Us.

Current Students: Please contact your department.