Staff profile
Overview
https://apps.dur.ac.uk/biography/image/686
Affiliation |
---|
Senior Manager X-Ray Service in the Department of Chemistry |
Publications
Chapter in book
- STERICALLY CROWDED σ‐ AND π‐BONDED METAL ARYL COMPLEXESMartinez, G. E., Killion, J. A., Jackson, B. J., Fout, A. R., Petel, B. E., Matson, E. M., Gridley, B. M., Moxey, G. J., Kays, D. L., Bryan, A. M., Power, P. P., Erickson, J. D., Riparetti, R., Power, P. P., Blundell, T. J., Ramos, A. M. G., Sharpe, H. R., Kays, D. L., Abraham, M. Y., … Ellis, J. E. (2018). STERICALLY CROWDED σ‐ AND π‐BONDED METAL ARYL COMPLEXES. In P. P. Power (Ed.), Inorganic Syntheses, Volume 37 (pp. 47-83). Wiley. https://doi.org/10.1002/9781119477822.ch4
Journal Article
- A Series of Enantiopure BEDT-TTF-acetamide Derivatives with Two Stereogenic Centres.Wallis, J. D., Martin, L., Ogar, J., Short, J. I., Rusbridge, E. K., Yang, S., & Blundell, T. J. (in press). A Series of Enantiopure BEDT-TTF-acetamide Derivatives with Two Stereogenic Centres. New Journal of Chemistry.
- High-Temperature X-Ray Crystal Structure Analysis of Schiff Base Cu(II) and Ni(II) Complexes and Data StatisticsOkui, A., Tsuchiya, R., Nakane, D., Akitsu, T., & Blundell, T. J. (2025). High-Temperature X-Ray Crystal Structure Analysis of Schiff Base Cu(II) and Ni(II) Complexes and Data Statistics. Molecules, 30(6), Article 1289. https://doi.org/10.3390/molecules30061289
- Intercalation of Neutral Guests in Pillared Salt Cocrystals of 5‑Ureidosalyclic AcidKennedy, S. R., Blundell, T. J., Henderson, E. F., Miquelot, A. P., & Steed, J. W. (2025). Intercalation of Neutral Guests in Pillared Salt Cocrystals of 5‑Ureidosalyclic Acid. Crystal Growth and Design, 25(5), 1614-1621. https://doi.org/10.1021/acs.cgd.4c01715
- Radical-cation salts of BEDT-TTF with tris-coordinated racemic dysprosium(iii) and terbium(iii) anionsHowarth, E., Lopez, J., Ogar, J. O., Blundell, T. J., Akutsu, H., Nakazawa, Y., Imajo, S., Ihara, Y., Coles, S. J., Horton, P. N., Christensen, J., & Martin, L. (2025). Radical-cation salts of BEDT-TTF with tris-coordinated racemic dysprosium(iii) and terbium(iii) anions. Dalton Transactions, 34(8), 3207-3215. https://doi.org/10.1039/d4dt03484h
- 2D Quantum Spin-Liquid Candidate Including a Chiral Anion: κ-(BEDT-TTF)2[BR/S(salicylate)2]Blundell, T. J., Sneade, K., Ogar, J. O., Yamashita, S., Akutsu, H., Nakazawa, Y., Yamamoto, T., & Martin, L. (2025). 2D Quantum Spin-Liquid Candidate Including a Chiral Anion: κ-(BEDT-TTF)<inf>2</inf>[B<inf>R/S</inf>(salicylate)<inf>2</inf>]. Journal of the American Chemical Society, 147(7), 5658-5668. https://doi.org/10.1021/jacs.4c12386
- Spontaneous Resolution of the Fe(C2O4)3 Anion and Inclusion of Chiral Guest Molecules in BEDT-TTF Radical-Cation SaltsOgar, J. O., Wallis, J. D., Blundell, T. J., Rusbridge, E. K., Mantle, A., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2025). Spontaneous Resolution of the Fe(C2O4)3 Anion and Inclusion of Chiral Guest Molecules in BEDT-TTF Radical-Cation Salts. Inorganic Chemistry, 64(2), 1075-1084. https://doi.org/10.1021/acs.inorgchem.4c04622
- Chiral and racemic BINOL spiroborate anions and radical-cation salt with BEDT-TTFOgar, J. O., Blundell, T. J., Usman, R., Vavrovič, M., & Martin, L. (2024). Chiral and racemic BINOL spiroborate anions and radical-cation salt with BEDT-TTF. Polyhedron, 264, Article 117262. https://doi.org/10.1016/j.poly.2024.117262
- S ‐Aryl Substitution Enhances Acidity of the 1,2,4‐Triazolium ScaffoldSmith, M. S., Blundell, T. J., Hickson, I., & O’Donoghue, A. C. (2024). S ‐Aryl Substitution Enhances Acidity of the 1,2,4‐Triazolium Scaffold. European Journal of Organic Chemistry. Advance online publication. https://doi.org/10.1002/ejoc.202400753
- Netting Crystal Nuclei in Metal–Organic Framework CavitiesBraschinsky, A., Blundell, T. J., & Steed, J. W. (2024). Netting Crystal Nuclei in Metal–Organic Framework Cavities. Small Structures. Advance online publication, Article 2400300. https://doi.org/10.1002/sstr.202400300
- Crystalline Molecular Cleft ClathratesLynch, A. V., Blundell, T. J., & Steed, J. W. (2024). Crystalline Molecular Cleft Clathrates. Crystal Growth & Design, 24(17), 7271-7277. https://doi.org/10.1021/acs.cgd.4c00928
- Spin density waves and ground state helices in EuGa2.4Al1.6Littlehales, M. T., Moody, S. H., Bereciartua, P. J., Mayoh, D. A., Parkin, Z. B., Blundell, T. J., Unsworth, E., Francoual, S., Balakrishnan, G., Alba Venero, D., & Hatton, P. D. (2024). Spin density waves and ground state helices in EuGa2.4Al1.6. Physical Review Research, 6(3), Article L032015. https://doi.org/10.1103/physrevresearch.6.l032015
- BEDT-TTF radical-cation salts with tris(oxalato)chromate and guest additivesBlundell, T. J., Ogar, J. O., Brannan, M. J., Rusbridge, E. K., Wallis, J. D., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2024). BEDT-TTF radical-cation salts with tris(oxalato)chromate and guest additives. RSC Advances, 14(26), 18444-18452. https://doi.org/10.1039/d4ra03425b
- Introduction of new guest molecules into BEDT-TTF radical-cation salts with tris(oxalato)ferrateBlundell, T. J., Rusbridge, E. K., Pemberton, R. E., Brannan, M. J., Morritt, A. L., Ogar, J. O., Wallis, J. D., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2024). Introduction of new guest molecules into BEDT-TTF radical-cation salts with tris(oxalato)ferrate. CrystEngComm, 26(14), 1962-1975. https://doi.org/10.1039/d4ce00099d
- Quantitative Raman microscopy to describe structural organisation in hollow microcrystals built from silicon catecholate and aminesVolkov, V. V., Blundell, T. J., Argent, S., & Perry, C. C. (2023). Quantitative Raman microscopy to describe structural organisation in hollow microcrystals built from silicon catecholate and amines. Dalton Transactions, 52(21), 7249-7257. https://doi.org/10.1039/d3dt00856h
- Superconductivity and Fermi Surface Studies of β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-Crown-6Laramee, B., Ghimire, R., Graf, D., Martin, L., Blundell, T. J., & Agosta, C. C. (2023). Superconductivity and Fermi Surface Studies of β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-Crown-6. Magnetochemistry, 9(3), Article 64. https://doi.org/10.3390/magnetochemistry9030064
- Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)gallate and tris(oxalato)iridateBlundell, T. J., Morritt, A. L., Rusbridge, E. K., Quibell, L., Oakes, J., Akutsu, H., Nakazawa, Y., Imajo, S., Kadoya, T., Yamada, J.- ichi, Coles, S. J., Christensen, J., & Martin, L. (2022). Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)gallate and tris(oxalato)iridate. Materials Advances, 3(11), 4724-4735. https://doi.org/10.1039/d2ma00384h
- Enantiopure and racemic radical-cation salts of B(mandelate)2− and B(2-chloromandelate)2− anions with BEDT-TTFBlundell, T. J., Lopez, J. R., Sneade, K., Wallis, J. D., Akutsu, H., Nakazawa, Y., Coles, S. J., Wilson, C., & Martin, L. (2022). Enantiopure and racemic radical-cation salts of B(mandelate)2− and B(2-chloromandelate)2− anions with BEDT-TTF. Dalton Transactions, 51(12), 4843-4852. https://doi.org/10.1039/d2dt00024e
- Slow magnetic relaxation in Fe(ii) m-terphenyl complexesValentine, A. J., Geer, A. M., Blundell, T. J., Tovey, W., Cliffe, M. J., Davies, E. S., Argent, S. P., Lewis, W., McMaster, J., Taylor, L. J., Reta, D., & Kays, D. L. (2022). Slow magnetic relaxation in Fe(ii) m-terphenyl complexes. Dalton Transactions, 51(47), 18118-18126. https://doi.org/10.1039/d2dt03531f
- Exceptionally high temperature spin crossover in amide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complex revealed by variable temperature Raman spectroscopy and single crystal X-ray diffractionAttwood, M., Akutsu, H., Martin, L., Blundell, T. J., Le Maguere, P., & Turner, S. S. (2021). Exceptionally high temperature spin crossover in amide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complex revealed by variable temperature Raman spectroscopy and single crystal X-ray diffraction. Dalton Transactions, 50(34), 11843-11851. https://doi.org/10.1039/d1dt01743h
- First Molecular Superconductor with the Tris(Oxalato)Aluminate Anion, β″-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and Isostructural Tris(Oxalato)Cobaltate and Tris(Oxalato)Ruthenate Radical Cation SaltsBlundell, T., Brannan, M., Mburu-Newman, J., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2021). First Molecular Superconductor with the Tris(Oxalato)Aluminate Anion, β″-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and Isostructural Tris(Oxalato)Cobaltate and Tris(Oxalato)Ruthenate Radical Cation Salts. Magnetochemistry, 7(7), Article 90. https://doi.org/10.3390/magnetochemistry7070090
- Chiral metal down to 4.2 K - a BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2−Blundell, T. J., Brannan, M., Nishimoto, H., Kadoya, T., Yamada, J.-I., Akutsu, H., Nakazawa, Y., & Martin, L. (2021). Chiral metal down to 4.2 K - a BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2−. Chemical Communications, 57(44), 5406-5409. https://doi.org/10.1039/d1cc01441b
- Synthesis and structures of polyiodide radical cation salts of donors combining tetrathiafulvalene with multiple thiophene or oligo-thiophene substituentsShort, J., Blundell, T. J., Yang, S., Sahin, O., Shakespeare, Y., Smith, E. L., Wallis, J. D., & Martin, L. (2020). Synthesis and structures of polyiodide radical cation salts of donors combining tetrathiafulvalene with multiple thiophene or oligo-thiophene substituents. CrystEngComm, 22(40), 6632-6644. https://doi.org/10.1039/d0ce00954g
- Chiral molecular conductor with an insulator–metal transition close to room temperatureShort, J. I., Blundell, T. J., Krivickas, S. J., Yang, S., Wallis, J. D., Akutsu, H., Nakazawa, Y., & Martin, L. (2020). Chiral molecular conductor with an insulator–metal transition close to room temperature. Chemical Communications, 56(66), 9497-9500. https://doi.org/10.1039/d0cc04094k
- A transition metal–gallium cluster formedviainsertion of “GaI”Blundell, T. J., Taylor, L. J., Valentine, A. J., Lewis, W., Blake, A. J., McMaster, J., & Kays, D. L. (2020). A transition metal–gallium cluster formedviainsertion of “GaI”. Chemical Communications, 56(58), 8139-8142. https://doi.org/10.1039/d0cc03559a
- Azamacrocycles and tertiary amines can be used to form size tuneable hollow structures or monodisperse oxide nanoparticles depending on the ‘M’ sourceTilburey, G. E., Blundell, T. J., Argent, S. P., & Perry, C. C. (2019). Azamacrocycles and tertiary amines can be used to form size tuneable hollow structures or monodisperse oxide nanoparticles depending on the ‘M’ source. Dalton Transactions, 48(41), 15470-15479. https://doi.org/10.1039/c9dt02080b
- 2D Molecular Superconductor to Insulator Transition in the β′′-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6 Series (M = Rh, Cr, Ru, Ir)Morritt, A. L., Lopez, J. R., Blundell, T. J., Canadell, E., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2019). 2D Molecular Superconductor to Insulator Transition in the β′′-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6 Series (M = Rh, Cr, Ru, Ir). Inorganic Chemistry, 58(16), 10656-10664. https://doi.org/10.1021/acs.inorgchem.9b00292
- Dehydrocoupling of dimethylamine–borane promoted by manganese(ii) m-terphenyl complexesSharpe, H. R., Geer, A. M., Blundell, T. J., Hastings, F. R., Fay, M. W., Rance, G. A., Lewis, W., Blake, A. J., & Kays, D. L. (2018). Dehydrocoupling of dimethylamine–borane promoted by manganese(ii) m-terphenyl complexes. Catalysis Science & Technology, 8(1), 229-235. https://doi.org/10.1039/c7cy02086d
- Selective reduction and homologation of carbon monoxide by organometallic iron complexesSharpe, H. R., Geer, A. M., Taylor, L. J., Gridley, B. M., Blundell, T. J., Blake, A. J., Davies, E. S., Lewis, W., McMaster, J., Robinson, D., & Kays, D. L. (2018). Selective reduction and homologation of carbon monoxide by organometallic iron complexes. Nature Communications, 9(1), Article 3757. https://doi.org/10.1038/s41467-018-06242-w
- Cyclotrimerisation of isocyanates catalysed by low-coordinate Mn(ii) and Fe(ii) m-terphenyl complexesSharpe, H. R., Geer, A. M., Williams, H. E. L., Blundell, T. J., Lewis, W., Blake, A. J., & Kays, D. L. (2017). Cyclotrimerisation of isocyanates catalysed by low-coordinate Mn(ii) and Fe(ii) m-terphenyl complexes. Chemical Communications, 53(5), 937-940. https://doi.org/10.1039/c6cc07243g
- Ligand influences on homoleptic Group 12 m-terphenyl complexesBlundell, T. J., Hastings, F. R., Gridley, B. M., Moxey, G. J., Lewis, W., Blake, A. J., & Kays, D. L. (2014). Ligand influences on homoleptic Group 12 m-terphenyl complexes. Dalton Transactions, 43(38), 14257-14264. https://doi.org/10.1039/c4dt00647j
- Cubane and dicubane complexes stabilised by sterically demanding m-terphenyl ligandsGridley, B. M., Moxey, G. J., Blundell, T. J., Lewis, W., Blake, A. J., & Kays, D. L. (2013). Cubane and dicubane complexes stabilised by sterically demanding m-terphenyl ligands. Chemical Communications, 49(84), 9752-9754. https://doi.org/10.1039/c3cc46384b