Skip to main content
Overview
Affiliations
AffiliationTelephone
Professor in the Department of Computer Science+44 (0) 191 33 44962

Biography

I received a PhD in Computer Science from Technische Universität München in 1999. From 2000 to 2004 I was an Assistant Professor in Theory of Communication Networks at ETH Zürich. From September 2004 to September 2021 I was with the Department of Computer Science (later renamed as School of Informatics and then School of Computing and Mathematical Sciences) at University of Leicester, first as Reader and then, from April 2007, as Professor. In September 2021 I joined the Department of Computer Science at Durham University as Professor.

Publications

You can check my DBLP page or my Google Scholar page.

Research Groups
  • NESTiD: Network Engineering, Science and Theory in Durham
  • ACiD: Algorithms and Complexity in Durham

Research interests

  • Algorithmic aspects of communication networks
  • Time-varying graphs and networks
  • Computing with explorable uncertainty
  • Approximation and on-line algorithms for combinatorial optimisation problems

Publications

Conference Paper

  • Scheduling with Obligatory Tests
    Dogeas, K., Erlebach, T., & Liang, Y.-C. (2024). Scheduling with Obligatory Tests. In Proceedings of the 32nd Annual European Symposium on Algorithms (ESA 2024) (pp. 48:1-48:14). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.ESA.2024.41
  • Competitive Query Minimization for Stable Matching with One-Sided Uncertainty
    Bampis, E., Dogeas, K., Erlebach, T., Megow, N., Schlöter, J., & Trehan, A. (2024). Competitive Query Minimization for Stable Matching with One-Sided Uncertainty. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2024 (pp. 17:1-17:21). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.17
  • Parameterized Algorithms for Multi-Label Periodic Temporal Graph Realization
    Erlebach, T., Morawietz, N., & Wolf, P. (2024). Parameterized Algorithms for Multi-Label Periodic Temporal Graph Realization. In Proceedings of the 3rd Symposium on Algorithmic Foundations of Dynamic Networks (pp. 12:1-12:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SAND.2024.12
  • Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous
    Dogeas, K., Erlebach, T., Kammer, F., Meintrup, J., & Moses Jr, W. K. (2024). Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous. In Proceedings of the 51st EATCS International Colloquium on Automata, Languages and Programming (pp. 55:1-55:18). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2024.62
  • List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs
    Baklan Sen, B., Diner, Öznur Y., & Erlebach, T. (2023). List 3-Coloring on Comb-Convex and Caterpillar-Convex Bipartite Graphs. In Proceedings of the 29th International Computing and Combinatorics Conference (COCOON 2023) (pp. 168-181). Springer. https://doi.org/10.1007/978-3-031-49190-0_12
  • Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty
    Erlebach, T., de Lima, M. S., Megow, N., & Schlöter, J. (2022). Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), 30th Annual European Symposium on Algorithms (ESA 2022) (pp. 49:1-49:18). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2022.49
  • Parameterized temporal exploration problems
    Erlebach, T., & Spooner, J. T. (2022). Parameterized temporal exploration problems. In J. Aspnes & O. Michail (Eds.), LIPIcs (pp. 15:1-15:17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.sand.2022.15
  • Orienting (Hyper)graphs Under Explorable Stochastic Uncertainty
    Bampis, E., Dürr, C., Erlebach, T., de Lima, M. S., Megow, N., & Schlöter, J. (2021). Orienting (Hyper)graphs Under Explorable Stochastic Uncertainty. In LIPIcs (pp. 10:1-10:18). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.esa.2021.10
  • Exploration of k-Edge-Deficient Temporal Graphs
    Erlebach, T., & Spooner, J. T. (2021). Exploration of k-Edge-Deficient Temporal Graphs. In Lecture Notes in Computer Science (pp. 371-384). Springer Verlag. https://doi.org/10.1007/978-3-030-83508-8_27
  • Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries
    Erlebach, T., Hoffmann, M., & de Lima, M. S. (2021). Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries. In LIPIcs (pp. 27:1-27:18). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.stacs.2021.27

Journal Article

Supervision students