Staff profile
Overview
Professor Sunil Chhita
Professor, Probability
Affiliation | Telephone |
---|---|
Professor, Probability in the Department of Mathematical Sciences | +44 (0) 191 33 43086 |
Biography
Research Summary
I am interested in probability theory and statistical mechanics, in particular the dimer model, the six vertex model and alternating sign matrices. Recently, I have been studying the rough-smooth transition, a transition between exponential and polynomial decay of correlations, which appears naturally in the two-periodic Aztec diamond. More recently, I have been looking at fluctuations appearing frozen-unfrozen interface in the alternating sign matrices.
More recently, I have been studying the so-called liquid-gas transition which naturally appears for domino tilings of the two-periodic Aztec diamond.
Research interests
- Statistical mechanics and probability
Publications
Journal Article
- Ayyer, A., Chhita, S., & Johansson, K. (2023). GOE fluctuations for the maximum of the top path in alternating sign matrices. Duke Mathematical Journal, 172(10), 1961-2104. https://doi.org/10.1215/00127094-2022-0075
- Chhita, S., & Duits, M. (2023). On the domino shuffle and matrix refactorizations. Communications in Mathematical Physics, 401(2), 1417-1467. https://doi.org/10.1007/s00220-023-04676-y
- Beffara, V., Chhita, S., & Johansson, K. (2022). Local geometry of the rough-smooth interface in the two-periodic Aztec diamond. Annals of Applied Probability, 32(2), 974-1017. https://doi.org/10.1214/21-aap1701
- Ayyer, A., & Chhita, S. (2021). Correlations in totally symmetric self-complementary plane partitions. Transactions of the London Mathematical Society, 8(1), 493-526. https://doi.org/10.1112/tlm3.12039
- Chhita, S., & Toninelli, F. L. (2021). The domino shuffling algorithm and Anisotropic KPZ stochastic growth. Annales Henri Lebesgue, 4, 1005-1034. https://doi.org/10.5802/ahl.95
- Chhita, S., Ferrari, P., & Toninelli, F. (2019). Speed and fluctuations for some driven dimer models. Annales de l’Institut Henri Poincaré D, 6(4), 489-532. https://doi.org/10.4171/aihpd/77
- Chhita, S., & Toninelli, F. L. (2019). A (2 + 1)-dimensional anisotropic KPZ growth model with a smooth phase. Communications in Mathematical Physics, 367(2), 483-516. https://doi.org/10.1007/s00220-019-03402-x
- Beffara, V., Chhita, S., & Johansson, K. (2018). Airy Point Process at the liquid-gas boundary. Annals of Probability, 46(5), 2973-3013. https://doi.org/10.1214/17-aop1244
- Chhita, S., Ferrari, P. L., & Spohn, H. (2018). Limit distributions for KPZ growth models with spatially homogeneous random initial conditions. Annals of Applied Probability, 28(3), 1573-1603. https://doi.org/10.1214/17-aap1338
- Chhita, S., & Ferrari, P. L. (2017). A combinatorial identity for the speed of growth in an anisotropic KPZ model. Annales de l’Institut Henri Poincaré D, 4(4), 453-477. https://doi.org/10.4171/aihpd/45
- Chhita, S., & Johansson, K. (2016). Domino statistics of the two-periodic Aztec diamond. Advances in Mathematics, 294, 37-149. https://doi.org/10.1016/j.aim.2016.02.025
- Chhita, S., Johansson, K., & Young, B. (2015). Asymptotic domino statistics in the Aztec diamond. Annals of Applied Probability, 25(3), 1232-1278. https://doi.org/10.1214/14-aap1021
- Adler, M., Chhita, S., Johansson, K., & van Moerbeke, P. (2014). Tacnode GUE-minor processes and double Aztec Diamonds. Probability Theory and Related Fields, 162(1), 275-325. https://doi.org/10.1007/s00440-014-0573-9
- Chhita, S., & Young, B. (2014). Coupling functions for domino tilings of Aztec diamonds. Advances in Mathematics, 259, 173-251. https://doi.org/10.1016/j.aim.2014.01.023
- Chhita, S. (2012). The Height Fluctuations of an Off-Critical Dimer Model on the Square Grid. Journal of Statistical Physics, 148(1), 67-88. https://doi.org/10.1007/s10955-012-0529-3