Staff profile
Professor Stewart Jamieson
Professor
Affiliation | Telephone |
---|---|
Professor in the Department of Geography | +44 (0) 191 33 41990 |
Biography
My research focuses on understanding controls on ice sheet behaviour, long-term landscape evolution, topographic reconstruction and glacial geomorphology. In particular, I am interested in understanding and quantifying the impact that interactions between these large-scale processes have upon ice sheet behaviour. Geographically, my work centres upon Antarctica although I also have interests in Greenland, Norway, Canada, Patagonia and the Himalayas.
I use an approach that links numerical models of ice sheets, ice streams, tectonics and rivers to geological and geomorphological evidence for past system behaviour. A significant component of my model-based research is carried out using synthetic systems to understand the responses of ice sheets and ice streams to perturbations in bed conditions produced under conditions of glacial erosion and deposition.
My current project investigates the importance of glacial erosion and deposition for controlling the advance and retreat of marine-terminating ice streams. This builds upon a major component of my previous work which focused on determining how patterns of glacial landscape evolution under terrestrial ice sheets can perturb ice dynamics on timescales of hundreds to millions of years.
Long-term landscape evolution of Antarctica
Much of my work has focussed on understanding patterns of long-term landscape evolution in Antarctica. By making links between numerical models of ice behaviour and our knowledge of landsystems that were produced under ice in the Northern Hemisphere, I have been able to predict how Antarctica has been modified by its long-lived ice sheet. This has led to better understanding of long-term interactions between ice and the landscape in Antarctica. Read more.
I am also working on using our understanding of glacial erosion processes and patterns to reconstruct the former landscape of Antarctica. This work forms part of theANTscape project to generate a range of palaeotopographic maps of Antarctica over the past 130 Million Years (www.antscape.org). This work is sponsored by Past Antarctic Ice Sheets (PAIS) group of the Scientific Committee on Antarctic Research (SCAR).
Research interests
- Ice Sheet Modelling
- Glaciology
- Landscape Evolution
Publications
Chapter in book
- Past Antarctic ice sheet dynamics (PAIS) and implications for future sea-level change.Colleoni, F., De Santis, L., Naish, T., DeConto, R., Escutia, C., Stocchi, P., Uenzelmann-Neben, G., Hochmuth, K., Hillenbrand, C.-D., van de Flierdt, T., Perex, L., Leitchenkov, G., Sangiorgi, F., Jamieson, S., Bentley, M., & Wilson, D. (2021). Past Antarctic ice sheet dynamics (PAIS) and implications for future sea-level change. In F. Florindo, M. Siegert, L. De Santis, & L. Naish (Eds.), Antarctic Climate Evolution (pp. 689-766). Elsevier.
- Exploration of subsurface Antarctica: uncovering past changes and modern processesSiegert, M., Jamieson, S., & White, D. (2018). Exploration of subsurface Antarctica: uncovering past changes and modern processes. In M. Siegert, S. Jamieson, & D. White (Eds.), Exploration of subsurface Antarctica : uncovering past changes and modern processes. (pp. 1-6). Geological Society. https://doi.org/10.1144/sp461.15
- The geomorphic signature of massive subglacial floods in Victoria Land, AntarcticaMarchant, D., Jamieson, S., & Sugden, D. (2011). The geomorphic signature of massive subglacial floods in Victoria Land, Antarctica. In M. Siegert, M. Kennicutt, & R. Bindschadler (Eds.), Antarctic subglacial aquatic environments. (pp. 111-127). American Geophysical Union. https://doi.org/10.1029/2010gm000943
- Landscape evolution of AntarcticaJamieson, S., & Sugden, D. (2008). Landscape evolution of Antarctica. In A. Cooper, P. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise, & the 10th I. editorial team (Eds.), Antarctica : a keystone in a changing world : Proceedings of the 10th International Symposium on Antarctic Earth Sciences. (pp. 39-54). National Academies Press.
Journal Article
- A circumpolar review of the breeding distribution and habitat use of the snow petrel (Pagodroma nivea), the world’s most southerly breeding vertebrateFrancis, J., Wakefield, E., Jamieson, S. S. R., Phillips, R. A., Hodgson, D. A., Southwell, C., Emmerson, L., Fretwell, P., Bentley, M. J., & McClymont, E. L. (2025). A circumpolar review of the breeding distribution and habitat use of the snow petrel (Pagodroma nivea), the world’s most southerly breeding vertebrate. Polar Biology, 48(1), Article 9. https://doi.org/10.1007/s00300-024-03336-8
- Distribution and Morphometry of Large Supraglacial Channels on Five Antarctic Ice ShelvesChen, J., Hodge, R. A., Jamieson, S. S., & Stokes, C. R. (2025). Distribution and Morphometry of Large Supraglacial Channels on Five Antarctic Ice Shelves. Journal of Glaciology, 71, Article e18. https://doi.org/10.1017/jog.2024.99
- Ice dynamics and structural evolution of Jutulstraumen, Dronning Maud Land, East Antarctica (1963-2022)Sharma, A., Stokes, C. R., & Jamieson, S. S. (2025). Ice dynamics and structural evolution of Jutulstraumen, Dronning Maud Land, East Antarctica (1963-2022). Journal of Glaciology, 71, Article e65. https://doi.org/10.1017/jog.2025.29
- Resolving the paradox of conflicting glacial chronologies: Reconstructing the pattern of deglaciation of the Magellan cordilleran ice dome (53–54°S) during the last glacial – interglacial transitionMcCulloch, R. D., Bentley, M. J., Fabel, D., Fernández-Navarro, H., García, J.-L., Hein, A. S., Huynh, C., Jamieson, S. S., Lira, M.-P., Lüthgens, C., Nield, G. A., San Román, M., & Tisdall, E. W. (2024). Resolving the paradox of conflicting glacial chronologies: Reconstructing the pattern of deglaciation of the Magellan cordilleran ice dome (53–54°S) during the last glacial – interglacial transition. Quaternary Science Reviews, 344, Article 108866. https://doi.org/10.1016/j.quascirev.2024.108866
- The deglacial history of 79N glacier and the Northeast Greenland Ice StreamRoberts, D. H., Lane, T. P., Jones, R. S., Bentley, M. J., Darvill, C. M., Rodes, A., Smith, J. A., Jamieson, S. S., Rea, B. R., Fabel, D., Gheorghiu, D., Davidson, A., Cofaigh, C. Ó, Lloyd, J. M., Callard, S. L., & Humbert, A. (2024). The deglacial history of 79N glacier and the Northeast Greenland Ice Stream. Quaternary Science Reviews, 336, Article 108770. https://doi.org/10.1016/j.quascirev.2024.108770
- Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flowCarter, C. M., Bentley, M. J., Jamieson, S. S. R., Paxman, G. J. G., Jordan, T. A., Bodart, J. A., Ross, N., & Napoleoni, F. (2024). Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow. The Cryosphere, 18(5), 2277-2296. https://doi.org/10.5194/tc-18-2277-2024
- Instabilities and Thresholds in AntarcticaColleoni, F., Naish, T., Gasson, E., Jamieson, S., Johnson, J., Klemann, V., Levy, R., Lloyd, A., Nowicki, S., Priestley, R., Silvano, A., Simms, A., Thomas, E., Van de Wal, R., & SCAR INSTANT Conference Organizing Committee. (2024). Instabilities and Thresholds in Antarctica. Past Global Changes Magazine, 32(1), 53-53. https://doi.org/10.22498/pages.32.1.53
- Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphologyLea, E. J., Jamieson, S. S. R., & Bentley, M. J. (2024). Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology. The Cryosphere, 18(4), 1733-1751. https://doi.org/10.5194/tc-18-1733-2024
- Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climatesPaxman, G. J. G., Jamieson, S. S. R., Dolan, A. M., & Bentley, M. J. (2024). Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates. The Cryosphere, 18(3), 1467-1493. https://doi.org/10.5194/tc-18-1467-2024
- Past glaciation of temperate‐continental mountains: A model for a debris‐charged plateau icefield/cirque glacier landsystem in the Southern Carpathians, RomaniaBalaban, C., Roberts, D., Evans, D., & Jamieson, S. (2024). Past glaciation of temperate‐continental mountains: A model for a debris‐charged plateau icefield/cirque glacier landsystem in the Southern Carpathians, Romania. Earth Surface Processes and Landforms, 49(2), 601-621. https://doi.org/10.1002/esp.5723
- Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay, Wilkes Land, East AntarcticaPicton, H. J., Stokes, C. R., Jamieson, S. S. R., Floricioiu, D., & Krieger, L. (2023). Extensive and anomalous grounding line retreat at Vanderford Glacier, Vincennes Bay, Wilkes Land, East Antarctica. The Cryosphere, 17(8), 3593–3616. https://doi.org/10.5194/tc-17-3593-2023
- The geomorphological record of an ice stream to ice shelf transition in Northeast GreenlandLane, T., Darvill, C., Rea, B., Bentley, M., Smith, J., Jamieson, S., Ó Cofaigh, C., & Roberts, D. (2023). The geomorphological record of an ice stream to ice shelf transition in Northeast Greenland. Earth Surface Processes and Landforms, 48(7), 1321-1341. https://doi.org/10.1002/esp.5552
- Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore windsMiles, B. W., Stokes, C. R., Jenkins, A., Jordan, J. R., Jamieson, S. S., & Gudmundsson, G. H. (2023). Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds. The Cryosphere, 17(1), 445-456. https://doi.org/10.5194/tc-17-445-2023
- An ancient river landscape preserved beneath the East Antarctic Ice SheetJamieson, S. S. R., Ross, N., Paxman, G. J. G., Clubb, F. J., Young, D. A., Yan, S., Greenbaum, J., Blankenship, D. D., & Siegert, M. J. (2023). An ancient river landscape preserved beneath the East Antarctic Ice Sheet. Nature Communications, 14(1), Article 6507. https://doi.org/10.1038/s41467-023-42152-2
- Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 yearsJordan, J. R., Miles, B., Gudmundsson, G., Jamieson, S., Jenkins, A., & Stokes, C. (2023). Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years. Nature Communications, 14(1), Article 1825. https://doi.org/10.1038/s41467-023-37553-2
- Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79° N) Glacier, northeast GreenlandBentley, M. J., Smith, J. A., Jamieson, S. S., Lindeman, M. R., Rea, B. R., Humbert, A., Lane, T. P., Darvill, C. M., Lloyd, J. M., Straneo, F., Helm, V., & Roberts, D. H. (2023). Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79° N) Glacier, northeast Greenland. The Cryosphere, 17(5), 1821-1837. https://doi.org/10.5194/tc-17-1821-2023
- Holocene history of the 79° N ice shelf reconstructed from epishelf lake and uplifted glaciomarine sedimentsSmith, J. A., Callard, L., Bentley, M. J., Jamieson, S. S., Sánchez-Montes, M. L., Lane, T. P., Lloyd, J. M., McClymont, E. L., Darvill, C. M., Rea, B. R., O’Cofaigh, C., Gulliver, P., Ehrmann, W., Jones, R. S., & Roberts, D. H. (2023). Holocene history of the 79° N ice shelf reconstructed from epishelf lake and uplifted glaciomarine sediments. The Cryosphere, 17(3). https://doi.org/10.5194/tc-17-1247-2023
- Response of the East Antarctic Sheet to Past and Future Climate ChangeStokes, C. R., Abram, N. J., Bentley, M. J., Edwards, T. L., England, M. H., Foppert, A., Jamieson, S. S., Jones, R. S., King, M. A., Lenaerts, J. T., Medley, B., Miles, B. W., Paxman, G. J., Ritz, C., van de Flierdt, T., & Whitehouse, P. (2022). Response of the East Antarctic Sheet to Past and Future Climate Change. Nature, 608, 275-286. https://doi.org/10.1038/s41586-022-04946-0
- The sensitivity of Cook Glacier, East Antarctica, to changes in ice-shelf extent and grounding-line positionJordan, J., Gudmundsson, G., Jenkins, A., Stokes, C., Miles, B., & Jamieson, S. (2022). The sensitivity of Cook Glacier, East Antarctica, to changes in ice-shelf extent and grounding-line position. Journal of Glaciology, 68(269), 473-485. https://doi.org/10.1017/jog.2021.106
- Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil depositsMcClymont, E. L., Bentley, M. J., Hodgson, D. A., Spencer-Jones, C. L., Wardley, T., West, M. D., Croudace, I. W., Berg, S., Gröcke, D. R., Kuhn, G., Jamieson, S. S., Sime, L., & Phillips, R. A. (2022). Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits. Climate of the Past, 18(2), 381-403. https://doi.org/10.5194/cp-18-381-2022
- Enhanced terrestrial carbon export from East Antarctica during the early EoceneInglis, G., Toney, J., Zhu, J., Poulsen, C., Rohl, U., Jamieson, S., Pross, J., Cramwinckel, M., Krishnan, S., Pagani, M., Bijl, P., & Bendle, J. (2022). Enhanced terrestrial carbon export from East Antarctica during the early Eocene. Paleoceanography and Paleoclimatology, 37(2), Article e2021PA004348. https://doi.org/10.1029/2021pa004348
- High spatial and temporal variability in Antarctic ice discharge linked to ice shelf buttressing and bed geometryMiles, B., Stokes, C., Jamieson, S., Jordan, J., Gudmundsson, G., & Jenkins, A. (2022). High spatial and temporal variability in Antarctic ice discharge linked to ice shelf buttressing and bed geometry. Scientific Reports, 12, Article 10968. https://doi.org/10.1038/s41598-022-13517-2
- Snow petrel stomach-oil deposits as a new biological archive of Antarctic sea iceMcClymont, E. L., Bentley, M. J., Hodgson, D. A., Spencer-Jones, C. L., Wardley, T., West, M. D., Croudace, I. W., Berg, S., Gröcke, D. R., Kuhn, G., Jamieson, S. S. R., Sime, L. C., & Phillips, R. A. (2022). Snow petrel stomach-oil deposits as a new biological archive of Antarctic sea ice. Past Global Changes Magazine, 30(2), 82-83. https://doi.org/10.22498/pages.30.2.82
- Large interannual variability in supraglacial lakes around East AntarcticaArthur, J. F., Stokes, C. R., Jamieson, S. S., Rachel Carr, J., Leeson, A. A., & Verjans, V. (2022). Large interannual variability in supraglacial lakes around East Antarctica. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29385-3
- The Last Glacial Maximum and Deglacial History of the Seno Skyring Ice Lobe (52°S), Southern PatagoniaLira, M.-P., García, J.-L., Bentley, M. J., Jamieson, S. S., Darvill, C. M., Hein, A. S., Fernández, H., Rodés, Ángel, Fabel, D., Smedley, R. K., & Binnie, S. A. (2022). The Last Glacial Maximum and Deglacial History of the Seno Skyring Ice Lobe (52°S), Southern Patagonia. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.892316
- Palaeoglaciation in the low latitude, low elevation tropical Andes, northern PeruLee, E., Ross, N., Henderson, A., Russell, A., Jamieson, S., & Fabel, D. (2022). Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru. Frontiers in Earth Science, 10, Article 838826. https://doi.org/10.3389/feart.2022.838826
- The triggers of the disaggregation of Voyeykov Ice Shelf (2007), Wilkes Land, East Antarctica, and its subsequent evolutionArthur, J. F., Stokes, C. R., Jamieson, S. S., Miles, B. W., Carr, J. R., & Leeson, A. A. (2021). The triggers of the disaggregation of Voyeykov Ice Shelf (2007), Wilkes Land, East Antarctica, and its subsequent evolution. Journal of Glaciology, 67(265), 933-951. https://doi.org/10.1017/jog.2021.45
- Mid-Holocene thinning of David Glacier, Antarctica: chronology and controlsStutz, J., Mackintosh, A., Norton, K., Whitmore, R., Baroni4, C., Jamieson, S. S., Jones, R. S., Balco, G., Salvatore, M. C., Casale, S., Lee, J. I., Seong, Y. B., McKay, R., Vargo, L. J., Lowry, D., Spector, P., Christl, M., Ochs, S. I., Nicola, L. D., … Woodruff, T. (2021). Mid-Holocene thinning of David Glacier, Antarctica: chronology and controls. The Cryosphere, 15(12), 5447-5471. https://doi.org/10.5194/tc-15-5447-2021
- Recent acceleration of Denman Glacier (1972-2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configurationMiles, B., Jordan, J., Stokes, C., Jamieson, S., Hilmar Gudmundsson, G., & Jenkins, A. (2021). Recent acceleration of Denman Glacier (1972-2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. Cryosphere, 15, 663-676. https://doi.org/10.5194/tc-2020-162
- Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West AntarcticaNapoleoni, F., Jamieson, S., Ross, N., Bentley, M., Rivera, A., Smith, A., Siegert, M., Paxman, G., Gacitua, G., Uribe, J., Zamora, R., Brisbourne, A., & Vaughan, D. (2020). Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica. Cryosphere, 14, 4507-4524. https://doi.org/10.5194/tc-14-4507-2020
- Recent understanding of Antarctic supraglacial lakes using satellite remote sensingArthur, J., Stokes, C., Jamieson, S., Carr, J., & Leeson, A. (2020). Recent understanding of Antarctic supraglacial lakes using satellite remote sensing. Progress in Physical Geography, 44(6), 837-869. https://doi.org/10.1177/0309133320916114
- Long-term increase in Antarctic Ice Sheet vulnerability driven by bed topography evolutionPaxman, G., Gasson, E., Jamieson, S., Bentley, M., & Ferraccioli, F. (2020). Long-term increase in Antarctic Ice Sheet vulnerability driven by bed topography evolution. Geophysical Research Letters, 47(20), Article e2020GL090003. https://doi.org/10.1029/2020gl090003
- Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018Miles, B., Stokes, C., Jenkins, A., Jordan, J., Jamieson, S., & Gudmundsson, G. (2020). Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018. Journal of Glaciology, 66(257), 485-495. https://doi.org/10.1017/jog.2020.20
- Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East AntarcticaArthur, J., Stokes, C., Jamieson, S., Carr, J., & Leeson, A. (2020). Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica. Cryosphere, 14(11), 4103-4120. https://doi.org/10.5194/tc-14-4103-2020
- Major ice‐sheet change in the Weddell Sector of West Antarctica over the last 5000 yearsSiegert, M. J., Kingslake, J., Ross, N., Whitehouse, P. L., Woodward, J., Jamieson, S. S., Bentley, M. J., Winter, K., Wearing, M., Hein, A. S., Jeofry, H., & Sugden, D. E. (2019). Major ice‐sheet change in the Weddell Sector of West Antarctica over the last 5000 years. Reviews of Geophysics, 57(4), 1197-1223. https://doi.org/10.1029/2019rg000651
- Reconstructions of Antarctic topography since the Eocene–Oligocene boundaryPaxman, G., Jamieson, S., Hochmuth, K., Gohl, K., Bentley, M., Leitchenkov, G., & Ferraccioli, F. (2019). Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 535, Article 109346. https://doi.org/10.1016/j.palaeo.2019.109346
- Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice SheetStokes, C., Sanderson, J., Miles, B., Jamieson, S., & Leeson, A. (2019). Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet. Scientific Reports, 9, Article 13823. https://doi.org/10.1038/s41598-019-50343-5
- Subglacial geology and geomorphology of the Pensacola-Pole Basin, East AntarcticaPaxman, G., Jamieson, S., Ferraccioli, F., Jordan, T., Bentley, M., Ross, N., Forsberg, R., Matsuoka, K., Steinhage, D., Eagles, G., & Casal, T. (2019). Subglacial geology and geomorphology of the Pensacola-Pole Basin, East Antarctica. Geochemistry, Geophysics, Geosystems, 20(6), 2786-2807. https://doi.org/10.1029/2018gc008126
- What can palaeoclimate modelling do for you?Haywood, A., Valdes, P., Aze, T., Barlow, N., Burke, A., Dolan, A., von der Heydt, A., Hill, D., Jamieson, S., Otto-Bliesner, B., Salzmann, U., Saupe, E., & Voss, J. (2019). What can palaeoclimate modelling do for you?. Earth Systems and Environment, 3(1), 1-18. https://doi.org/10.1007/s41748-019-00093-1
- The role of lithospheric flexure in the landscape evolution of the Wilkes Subglacial Basin and Transantarctic Mountains, East AntarcticaPaxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Ross, N., Watts, A., Leitchenkov, G., Armadillo, E., & Young, D. (2019). The role of lithospheric flexure in the landscape evolution of the Wilkes Subglacial Basin and Transantarctic Mountains, East Antarctica. Journal of Geophysical Research: Earth Surface, 124(3), 812-829. https://doi.org/10.1029/2018jf004705
- The pre-glacial landscape of AntarcticaSugden, D., & Jamieson, S. (2018). The pre-glacial landscape of Antarctica. Scottish Geographical Journal, 134(3-4), 203-223. https://doi.org/10.1080/14702541.2018.1535090
- Velocity increases at Cook Glacier, East Antarctica linked to ice shelf loss and a subglacial flood eventMiles, B., Stokes, C., & Jamieson, S. (2018). Velocity increases at Cook Glacier, East Antarctica linked to ice shelf loss and a subglacial flood event. Cryosphere, 12(10), 3123-3136. https://doi.org/10.5194/tc-12-3123-2018
- Lack of evidence for a substantial sea-level fluctuation within the Last InterglacialBarlow, N., McClymont, E., Whitehouse, P., Stokes, C., Jamieson, S., Woodroffe, S., Bentley, M., Callard, S., Ó Cofaigh, C., Evans, D., Horrocks, J., Lloyd, J., Long, A., Margold, M., Roberts, D., & Sanchez-Montes, M. (2018). Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial. Nature Geoscience, 11, 627-634. https://doi.org/10.1038/s41561-018-0195-4
- Bedrock erosion surfaces record former East Antarctic Ice Sheet extentPaxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Ross, N., Armadillo, E., Gasson, E., Leitchenkov, G., & DeConto, R. (2018). Bedrock erosion surfaces record former East Antarctic Ice Sheet extent. Geophysical Research Letters, 45(9), 4114-4123. https://doi.org/10.1029/2018gl077268
- Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972-2013)Lovell, A., Stokes, C., & Jamieson, S. (2017). Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972-2013). Antarctic Science, 29(5), 468-483. https://doi.org/10.1017/s0954102017000074
- Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion and normal faultingPaxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Forsberg, R., Ross, N., Watts, A., Corr, H., & Jordan, T. (2017). Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion and normal faulting. Journal of Geophysical Research. Solid Earth, 122(3), 2390-2408. https://doi.org/10.1002/2016jb013841
- Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-upMiles, B., Stokes, C., & Jamieson, S. (2017). Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. Cryosphere, 11, 427-442. https://doi.org/10.5194/tc-11-427-2017
- Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, AntarcticaWhitehouse, P. L., Bentley, M. J., Vieli, A., Jamieson, S. S., Hein, A. S., & Sugden, D. E. (2017). Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, Antarctica. Journal of Geophysical Research: Earth Surface, 122(1), 371-397. https://doi.org/10.1002/2016jf004121
- Controls on the Early Holocene Collapse of the Bothnian Sea Ice StreamClason, C., Greenwood, S., Selmes, N., Lea, J., Jamieson, S., Nick, F., & Holmlund, P. (2016). Controls on the Early Holocene Collapse of the Bothnian Sea Ice Stream. Journal of Geophysical Research: Earth Surface, 121(12), 2494-2513. https://doi.org/10.1002/2016jf004050
- The surficial and subglacial geomorphology of western Dronning Maud Land, AntarcticaChang, M., Jamieson, S., Bentley, M., & Stokes, C. (2016). The surficial and subglacial geomorphology of western Dronning Maud Land, Antarctica. Journal of Maps, 12(5), 892-903. https://doi.org/10.1080/17445647.2015.1097289
- Surficial geology and geomorphology of the Kumtor Gold Mine, Kyrgyzstan: human impacts on mountain glacier landsystemsEvans, D., Ewertowski, M., Jamieson, S., & Orton, C. (2016). Surficial geology and geomorphology of the Kumtor Gold Mine, Kyrgyzstan: human impacts on mountain glacier landsystems. Journal of Maps, 12(5), 757-769. https://doi.org/10.1080/17445647.2015.1071720
- Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacierLangley, E., Leeson, A., Stokes, C., & Jamieson, S. (2016). Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier. Geophysical Research Letters, 43(16), 8563-8571. https://doi.org/10.1002/2016gl069511
- Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changesMiles, B., Stokes, C., & Jamieson, S. (2016). Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Science Advances, 2(5), Article e1501350. https://doi.org/10.1126/sciadv.1501350
- Subglacial processes on an Antarctic ice stream bed. 1: Sediment transport and bedform genesis inferred from marine geophysical dataLivingstone, S., Stokes, C., O Cofaigh, C., Hillenbrand, C.-D., Vieli, A., Jamieson, S., Spagnolo, M., & Dowdeswell, J. (2016). Subglacial processes on an Antarctic ice stream bed. 1: Sediment transport and bedform genesis inferred from marine geophysical data. Journal of Glaciology, 62(232), 270-284. https://doi.org/10.1017/jog.2016.18
- Subglacial processes on an Antarctic ice stream bed. 2: Can modelled ice dynamics explain the morphology of mega-scale glacial lineations?Jamieson, S., Stokes, C., Livingstone, S., Vieli, A., Ò Cofaigh, C., Hillenbrand, C.-D., & Spagnolo, M. (2016). Subglacial processes on an Antarctic ice stream bed. 2: Can modelled ice dynamics explain the morphology of mega-scale glacial lineations?. Journal of Glaciology, 62(232), 285-298. https://doi.org/10.1017/jog.2016.19
- An extensive subglacial lake and canyon system in Princess Elizabeth Land, East AntarcticaJamieson, S., Ross, N., Greenbaum, J., Young, D., Aitken, A., Roberts, J., Blankenship, D., Sun, B., & Siegert, M. (2016). An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica. Geology, 44(2), 87-90. https://doi.org/10.1130/g37220.1
- Rapid advance of two mountain glaciers in response to mine-related debris loadingJamieson, S., Ewertowski, M., & Evans, D. (2015). Rapid advance of two mountain glaciers in response to mine-related debris loading. Journal of Geophysical Research: Earth Surface, 120(7), 1418-1435. https://doi.org/10.1002/2015jf003504
- Basal topographic controls on rapid retreat of Humboldt Glacier, northern GreenlandCarr, J., Vieli, A., Stokes, C., Jamieson, S., Palmer, S., Christoffersen, P., Dowdeswell, J., Nick, F., Blankenship, D., & Young, D. (2015). Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. Journal of Glaciology, 61(225), 137-150. https://doi.org/10.3189/2015jog14j128
- The Glacial Geomorphology of the Antarctic Ice Sheet BedJamieson, S., Stokes, C., Ross, N., Rippin, D., Bingham, R., Wilson, D., Margold, M., & Bentley, M. (2014). The Glacial Geomorphology of the Antarctic Ice Sheet Bed. Antarctic Science, 26(6), 724-741. https://doi.org/10.1017/s0954102014000212
- A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial MaximumBentley, M., Ó Cofaigh, C., Anderson, J., Conway, H., Davies, B., Graham, A., Hillenbrand, C.-D., Hodgson, D., Jamieson, S., Larter, R., Mackintosh, A., Smith, J., Verleyen, E., Ackert, R., Bart, P., Berg, S., Brunstein, D., Canals, M., Colhoun, E., … Zwartz, D. (2014). A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quaternary Science Reviews, 100, 1-9. https://doi.org/10.1016/j.quascirev.2014.06.025
- Understanding controls on rapid ice-stream retreat during the last deglaciation of Marguerite Bay, Antarctica, using a numerical modelJamieson, S., Vieli, A., Ó Cofaigh, C., Stokes, C., Livingstone, S., & Hillenbrand, C.-D. (2014). Understanding controls on rapid ice-stream retreat during the last deglaciation of Marguerite Bay, Antarctica, using a numerical model. Journal of Geophysical Research: Earth Surface, 119(2), 247-263. https://doi.org/10.1002/2013jf002934
- Early East Antarctic Ice Sheet growth recorded in the landscape of the Gamburtsev Subglacial MountainsRose, K., Ferraccioli, F., Jamieson, S., Bell, R., Corr, H., Creyts, T., Fretwell, P., Jordan, T., Damaske, D., & Braaten, D. (2013). Early East Antarctic Ice Sheet growth recorded in the landscape of the Gamburtsev Subglacial Mountains. Earth and Planetary Science Letters, 375, 1-12. https://doi.org/10.1016/j.epsl.2013.03.053
- Glacial geomorphology of Marguerite Bay Palaeo-Ice stream, western Antarctic PeninsulaLivingstone, S., O’Cofaigh, C., Stokes, C., Hillenbrand, C.-D., Vieli, A., & Jamieson, S. (2013). Glacial geomorphology of Marguerite Bay Palaeo-Ice stream, western Antarctic Peninsula. Journal of Maps, 9(4), 558-572. https://doi.org/10.1080/17445647.2013.829411
- Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest OligoceneWilson, D., Pollard, D., DeConto, R., Jamieson, S., & Luyendyk, B. (2013). Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophysical Research Letters, 40(16), 4305-4309. https://doi.org/10.1002/grl.50797
- Ice-stream stability on a reverse bed slopeJamieson, S., Vieli, A., Livingstone, S., Ó Cofaigh, C., Stokes, C., Hillenbrand, C.-D., & Dowdeswell, J. (2012). Ice-stream stability on a reverse bed slope. Nature Geoscience, 5(11), 799-802. https://doi.org/10.1038/ngeo1600
- Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch.Pross, J., Contreras, L., Bijl, P., Greenwood, D., Bohaty, S., Schouten, S., Bendle, J., Röhl, U., Tauxe, L., Raine, J., Huck, J., van de Flierdt, T., Jamieson, S., Stickley, C., van de Schootbrugge, B., Escutia, C., Brinkhuis, H., & Scientists, I. O. D. P. E. 318. (2012). Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature, 488(7409), 73-77. https://doi.org/10.1038/nature11300
- Antarctic palaeo-ice streamsLivingstone, S., O’Cofaigh, C., Stokes, C., Hillenbrand, C.-D., Vieli, A., & Jamieson, S. (2012). Antarctic palaeo-ice streams. Earth-Science Reviews, 111(1-2), 90-128. https://doi.org/10.1016/j.earscirev.2011.10.003
- Antarctic topography at the Eocene-Oligocene boundary.Wilson, D., Jamieson, S., Barrett, P., Leitchenkov, G., Gohl, K., & Larter, R. (2012). Antarctic topography at the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 335-336, 24-34. https://doi.org/10.1016/j.palaeo.2011.05.028
- The evolution of the subglacial landscape of AntarcticaJamieson, S., Sugden, D., & Hulton, N. (2010). The evolution of the subglacial landscape of Antarctica. Earth and Planetary Science Letters, 293(1-2), 1-27. https://doi.org/10.1016/j.epsl.2010.02.012
- The impact of parametric uncertainty and topographic error in ice-sheet modellingHebeler, F., Purves, R., & Jamieson, S. (2008). The impact of parametric uncertainty and topographic error in ice-sheet modelling. Journal of Glaciology, 54(188), 889-919. https://doi.org/10.3189/002214308787779852
- Modelling landscape evolution under ice sheetsJamieson, S., Hulton, N., & Hagdorn, M. (2008). Modelling landscape evolution under ice sheets. Geomorphology, 97(1-2), 91-108. https://doi.org/10.1016/j.geomorph.2007.02.047
- Cenozoic Landscape evolution of the Lambert basin, East Antarctica: the relative role of rivers and ice sheetsJamieson, S., Hulton, N., Sugden, D., Payne, A., & Taylor, J. (2005). Cenozoic Landscape evolution of the Lambert basin, East Antarctica: the relative role of rivers and ice sheets. Global and Planetary Change, 45(1-3), 35-49. https://doi.org/10.1016/j.gloplacha.2004.09.015
- Tectonic forcing of longitudinal valleys in the Himalaya: morphological analysis of the Ladakh Batholith, North IndiaJamieson, S., Sinclair, H., Kirstein, L., & Purves, R. (2004). Tectonic forcing of longitudinal valleys in the Himalaya: morphological analysis of the Ladakh Batholith, North India. Geomorphology, 58(1-4), 49-65. https://doi.org/10.1016/s0169-555x%2803%2900185-5
- Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East AntarcticaPaxman, G., Watts, A., Ferraccioli, F., Jordan, T., Bell, R., Jamieson, S., & Finn, C. (1999). Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica. Earth and Planetary Science Letters, 452, 1-14. https://doi.org/10.1016/j.epsl.2016.07.040
Other (Digital/Visual Media)
- Combined palaeotopography and palaeobathymetry of the Antarctic continent and the Southern Ocean since 34 MaHochmuth, K., Paxman, G., Gohl, K., Jamieson, S., Leitchenkov, G., Bentley, M., Ferraccioli, F., Sauermilch, I., Whittaker, J., Uenzelmann-Neben, G., Davy, B., & DeSantis, L. (2020). Combined palaeotopography and palaeobathymetry of the Antarctic continent and the Southern Ocean since 34 Ma [Dataset].
- Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica, 1977-2017 (Version 1.0)Napoleoni, F., Jamieson, S., Ross, N., Bentley, M., Rivera, A., Smith, A., Siegert, M., Paxman, G., Gacitúa, G., Uribe, J., Zamora, R., Brisbourne, A., & Vaughan, D. (2020). Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica, 1977-2017 (Version 1.0) [Dataset]. https://doi.org/10.5285/72f46ad0-063d-49a7-ba89-45edc5d9aac7
Other (Print)
- Look to the past to see the futureJamieson, S., & Livingstone, S. (2013). Look to the past to see the future. Geoconnexion International.