Staff profile
Dr Stephen Chivasa
Associate Professor
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Biosciences | +44 (0) 191 33 41275 |
Biography
Research Interests
Cells in multicellular organisms communicate with each other to synchronise their responses to internal and external growth & developmental cues. Cell-to-cell communication is essential in adaptive responses to both biotic and abiotic stress. The Arabidopsis plasma membrane is endowed with numerous receptor-like kinases with a ligand-binding ecto-domain and an intracellular kinase domain. This suggests that cell-cell communications via the apoplastic route could be more widespread than previously thought. The functions of only a handful of these plasma membrane receptors and their cognate ligands have been characterised. We are using proteomics, genomics, and metabolomics to identify genes/proteins/metabolites important in plant stress responses. By focusing on the Extracellular Matrix, we hope to capture signals and signal-regulatory proteins in this sub-cellular compartment with roles in programmed cell death and adaptive responses to drought and pathogen attack. We created an extensive in-house database of plant ECM proteins and we are mining publicly available crop datasets for linking with model plants.
Current projects in the group focus on identifying new genes/proteins in:
1]. Programmed Cell Death
2]. Adaptation to Drought Stress
3]. Pathogen Defence
Publications
Journal Article
- Expression profiles of phytosulfokine signalling components in sorghum drought stress-adaptive response.Goche, T., Ngara, R., & Chivasa, S. (2025). Expression profiles of phytosulfokine signalling components in sorghum drought stress-adaptive response. MicroPublication Biology, 2025. https://doi.org/10.17912/micropub.biology.001284
- Comparative Physiological, Biochemical, and Leaf Proteome Responses of Contrasting Wheat Varieties to Drought Stress.Moloi, S. J., Alqarni, A. O., Brown, A. P., Goche, T., Shargie, N. G., Moloi, M. J., Gokul, A., Chivasa, S., & Ngara, R. (2024). Comparative Physiological, Biochemical, and Leaf Proteome Responses of Contrasting Wheat Varieties to Drought Stress. Plants, 13(19), Article 2797. https://doi.org/10.3390/plants13192797
- Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress.Ngwenya, S. P., Moloi, S. J., Shargie, N. G., Brown, A. P., Chivasa, S., & Ngara, R. (2024). Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. Plants, 13(13), Article 1874. https://doi.org/10.3390/plants13131874
- Carbon Monoxide Alleviates Salt-Induced Oxidative Damage in Sorghum bicolor by Inducing the Expression of Proline Biosynthesis and Antioxidant GenesIkebudu, V. C., Nkuna, M., Ndou, N., Ajayi, R. F., Chivasa, S., Cornish, K., & Mulaudzi, T. (2024). Carbon Monoxide Alleviates Salt-Induced Oxidative Damage in Sorghum bicolor by Inducing the Expression of Proline Biosynthesis and Antioxidant Genes. Plants, 13(6), Article 782. https://doi.org/10.3390/plants13060782
- Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures.Muthego, D., Moloi, S. J., Brown, A. P., Goche, T., Chivasa, S., & Ngara, R. (2023). Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. Plant Signaling & Behavior, 18(1), Article 2291618. https://doi.org/10.1080/15592324.2023.2291618
- Coapplication of water treatment residual and compost for increased phosphorus availability in arable sandy soilsGwandu, T., Lukashe, N., Rurinda, J., Stone, W., Chivasa, S., Clarke, C., Nezomba, H., Mtambanengwe, F., Mapfumo, P., Steytler, J. G., & Johnson, K. (2023). Coapplication of water treatment residual and compost for increased phosphorus availability in arable sandy soils. Journal of Sustainable Agriculture and Environment, 2(1), 68-81. https://doi.org/10.1002/sae2.12039
- Waste to resource: use of water treatment residual for increased maize productivity and micronutrient contentGwandu, T., Blake, L., Nezomba, H., Rurinda, J., Chivasa, S., Mtambanengwe, F., & Johnson, K. (2022). Waste to resource: use of water treatment residual for increased maize productivity and micronutrient content. Environmental Geochemistry and Health, 44(10), 3359-3376. https://doi.org/10.1007/s10653-021-01100-z
- Extracellular ATP targets Arabidopsis RIBONUCLEASE 1 to suppress mycotoxin stress-induced cell deathGoodman, H. L., Kroon, J. T., Tomé, D. F., Hamilton, J. M., Alqarni, A. O., & Chivasa, S. (2022). Extracellular ATP targets Arabidopsis RIBONUCLEASE 1 to suppress mycotoxin stress-induced cell death. New Phytologist, 235(4), 1531-1542. https://doi.org/10.1111/nph.18211
- A nation that rebuilds its soils rebuilds itself- an engineer's perspectiveJohnson, K. L., Gray, N. D., Stone, W., Kelly, B. F., Fitzsimons, M. F., Clarke, C., Blake, L., Chivasa, S., Mtambanengwe, F., Mapfumo, P., Baker, A., Beckmann, S., Dominelli, L., Neal, A. L., & Gwandu, T. (2022). A nation that rebuilds its soils rebuilds itself- an engineer’s perspective. Soil Security, 7, Article 100060. https://doi.org/10.1016/j.soisec.2022.100060
- Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A ReviewNgara, R., Goche, T., Swanevelder, D. Z. H., & Chivasa, S. (2021). Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life, 11(7), Article 704. https://doi.org/10.3390/life11070704
- Isolation of Arabidopsis extracellular ATP‐binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C‐LIKE 1 as an extracellular protein essential for fumonisin B1 toxicitySmith, S. J., Goodman, H., Kroon, J. T., Brown, A. P., Simon, W. J., & Chivasa, S. (2021). Isolation of Arabidopsis extracellular ATP‐binding proteins by affinity proteomics and identification of PHOSPHOLIPASE C‐LIKE 1 as an extracellular protein essential for fumonisin B1 toxicity. Plant Journal, 106(5), 1387-1400. https://doi.org/10.1111/tpj.15243
- Heat Stress Triggers Differential Protein Accumulation in the Extracellular Matrix of Sorghum Cell Suspension CulturesNgcala, M. G., Goche, T., Brown, A. P., Chivasa, S., & Ngara, R. (2020). Heat Stress Triggers Differential Protein Accumulation in the Extracellular Matrix of Sorghum Cell Suspension Cultures. Proteomes, 8(4), Article 29. https://doi.org/10.3390/proteomes8040029
- Insights into Plant Extracellular ATP Signaling Revealed by the Discovery of an ATP-Regulated Transcription FactorChivasa, S. (2020). Insights into Plant Extracellular ATP Signaling Revealed by the Discovery of an ATP-Regulated Transcription Factor. Plant and Cell Physiology, 61(4), 673-674. https://doi.org/10.1093/pcp/pcaa033
- Stress‐adaptive gene discovery by exploiting collective decision‐making of decentralised plant response systemsChivasa, S., & Goodman, H. L. (2020). Stress‐adaptive gene discovery by exploiting collective decision‐making of decentralised plant response systems. New Phytologist, 225(6), 2307-2313. https://doi.org/10.1111/nph.16273
- Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitationGoche, T., Shargie, N. G., Cummins, I., Brown, A. P., Chivasa, S., & Ngara, R. (2020). Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports, 10(1), Article 11835. https://doi.org/10.1038/s41598-020-68735-3
- Bioenergy Production Using Trichormus variabilis - A reviewAbedi, S., Astaraei, F. R., Ghobadian, B., Tavakoli, O., Jalili, H., Chivasa, S., & Chris, G. H. (2019). Bioenergy Production Using Trichormus variabilis - A review. Biofuels, Bioproducts and Biorefining, 13(5), 1365-1382. https://doi.org/10.1002/bbb.2023
- Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor (L.) Moench Varieties: A Resource for Gene Discovery in Plant Stress BiologyRamulifho, E., Goche, T., Van As, J., Tsilo, T. J., Chivasa, S., & Ngara, R. (2019). Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor (L.) Moench Varieties: A Resource for Gene Discovery in Plant Stress Biology. Agronomy, 9(5), Article 218. https://doi.org/10.3390/agronomy9050218
- Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediationAbedi, S., Astaraei, F. R., Ghobadian, B., Tavakoli, O., Jalili, H., Greenwell, H. C., Cummins, I., & Chivasa, S. (2019). Decoupling a novel Trichormus variabilis-Synechocystis sp. interaction to boost phycoremediation. Scientific Reports, 9, Article 2511. https://doi.org/10.1038/s41598-019-38997-7
- Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stressNgara, R., Ramulifho, E., Movahedi, M., Shargie, N. G., Brown, A. P., & Chivasa, S. (2018). Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Scientific Reports, 8(1), Article 8671. https://doi.org/10.1038/s41598-018-27003-1
- Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistanceGonzález-Torralva, F., Brown, A., & Chivasa, S. (2017). Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance. Scientific Reports, 7. https://doi.org/10.1038/srep42565
- A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix ProteinsSmith, S. J., Kroon, J. T., Simon, W. J., Slabas, A. R., & Chivasa, S. (2015). A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins. Molecular and Cellular Proteomics, 14(6), 1556-1568. https://doi.org/10.1074/mcp.m114.045054
- Light regulation of cadmium-induced cell death in ArabidopsisSmith, S., Wang, Y., Slabas, A., & Chivasa, S. (2014). Light regulation of cadmium-induced cell death in Arabidopsis. Plant Signaling & Behavior, 8(12). https://doi.org/10.4161/psb.27578
- Proteomics reveals new insights into the role of light in cadmium response in Arabidopsis cell suspension cultures.Wang, Y., Kroon, J., Slabas, A., & Chivasa, S. (2013). Proteomics reveals new insights into the role of light in cadmium response in Arabidopsis cell suspension cultures. Proteomics, 13(7), 1145-1158. https://doi.org/10.1002/pmic.201200321
- UDP-Glucose Pyrophosphorylase Is a Novel Plant Cell Death RegulatorChivasa, S., Tomé, D., & Slabas, A. (2013). UDP-Glucose Pyrophosphorylase Is a Novel Plant Cell Death Regulator. Journal of Proteome Research, 12(4), 1743-1753. https://doi.org/10.1021/pr3010887
- Plant extracellular ATP signalling: new insight from proteomicsChivasa, S., & Slabas, A. (2012). Plant extracellular ATP signalling: new insight from proteomics. Molecular BioSystems. https://doi.org/10.1039/c1mb05278k
- Proteomic analysis of dark response in Arabidopsis cell suspension culturesWang, Y., Slabas, A., & Chivasa, S. (2012). Proteomic analysis of dark response in Arabidopsis cell suspension cultures. Journal of Plant Physiology, 169(17), 1690-1697. https://doi.org/10.1016/j.jplph.2012.06.013
- The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome.Chivasa, S., Simon, J., Murphy, A., Lindsey, K., Carr, J., & Slabas, A. (2010). The effects of extracellular adenosine 5’-triphosphate on the tobacco proteome. Proteomics, 10(2), 235-244. https://doi.org/10.1002/pmic.200900454
- Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels.Demidchik, V., Shang, Z., Shin, R., Thompson, E., Rubio, L., Laohavisit, A., Mortimer, J., Chivasa, S., Slabas, A., Glover, B., Schachtman, D., Shabala, S., & Davies, J. (2009). Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant Journal, 58(6), 903-913. https://doi.org/10.1111/j.1365-313x.2009.03830.x
- Extracellular ATP is a regulator of pathogen defence in plants.Chivasa, S., Murphy, A., Hamilton, J., Lindsey, K., Carr, J., & Slabas, A. (2009). Extracellular ATP is a regulator of pathogen defence in plants. Plant Journal, 60(3), 436-448. https://doi.org/10.1111/j.1365-313x.2009.03968.x
- Extracellular ATP: a modulator of cell death and pathogen defense in plantsChivasa, S., Tomé, D., Murphy, A., Hamilton, J., Lindsey, K., Carr, J., & Slabas, A. (2009). Extracellular ATP: a modulator of cell death and pathogen defense in plants. Plant Signaling & Behavior, 4(11), 1078-1080. https://doi.org/10.4161/psb.4.11.9784
- Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures.Chivasa, S., Hamilton, J., Pringle, R., Ndimba, B., Simon, J., Lindsey, K., & Slabas, A. (2006). Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures. Journal of Experimental Botany, 57, 1553-1562.
- Pathogen elicitor-induced changes in the maize extracellular matrix proteomeChivasa, S., Simon, W., Yu, X., Yalpani, N., & Slabas, A. (2005). Pathogen elicitor-induced changes in the maize extracellular matrix proteome. Proteomics, 5(18), 4894-4904. https://doi.org/10.1002/pmic.200500047
- Extracellular ATP functions as an endogenous external metabolite regulating plant cell viabilityChivasa, S., Ndimba, B., Simon, J., Lindsey, K., & Slabas, A. (2005). Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell, 17(11), 3019-3034. https://doi.org/10.1105/tpc.105.036806
- Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometryNdimba, B., Chivasa, S., Simon, J., & Slabas, A. (2005). Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 5(16), 4185-4196. https://doi.org/10.1002/pmic.200401282
- Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locationsSlabas, A., Ndimba, B., Simon, J., & Chivasa, S. (2004). Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Biochemical Society Transactions, 32, 524-528.
- Proteomic analysis of changes in the extracellular matrix ofArabidopsis cell suspension cultures induced by fungal elicitorsNdimba, B., Chivasa, S., Hamilton, J., Simon, W., & Slabas, A. (2003). Proteomic analysis of changes in the extracellular matrix ofArabidopsis cell suspension cultures induced by fungal elicitors. Proteomics, 3(6), 1047-1059.
- Proteomic analysis of the Arabidopsis thaliana cell wallChivasa, S., Ndimba, B., Simon, J., Robertson, D., Yu, X., Knox, J., Bolwell, P., & Slabas, A. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. ELECTROPHORESIS, 23(11), 1754-1765.
- New hosts of Turnip Mosaic Virus in ZimbabweChivasa, S., Ekpo, E., & Hicks, R. (2002). New hosts of Turnip Mosaic Virus in Zimbabwe. Plant Pathology, 51(3), 386-386. https://doi.org/10.1046/j.1365-3059.2002.00699.x
- Changes in gene expression during development and thermogenesis in ArumChivasa, S., Berry, O., ap Rees, T., & Carr, J. (1999). Changes in gene expression during development and thermogenesis in Arum. Australian Journal of Plant Physiology, 26(5), 391-399. https://doi.org/10.1071/pp98154
- Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways?Murphy, A., Chivasa, S., Singh, D., & Carr, J. (1999). Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways?. Trends in Plant Science, 4(4), 155-160. https://doi.org/10.1016/s1360-1385%2899%2901390-4
- Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylaseChivasa, S., & Carr, J. (1998). Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell, 10(9), 1489-1498. https://doi.org/10.1105/tpc.10.9.1489
- Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive MechanismChivasa, S., Murphy, A., Naylor, M., & Carr, J. (1997). Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism. Plant Cell, 9(4), 547-557. https://doi.org/10.1105/tpc.9.4.547
- Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase {beta}-subunit as a novel plant cell death regulator.Chivasa, S., Tome, D., Hamilton, J., & Slabas, A. (n.d.). Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase {beta}-subunit as a novel plant cell death regulator. Molecular Cell Proteomics. Advance online publication.