Staff profile
Overview
Dr Peter Bowcock
Admission Tutor, Course Director (Other Programmes), Associate Professor, Mathematical & Theoretical Particle Physics
Affiliation | Telephone |
---|---|
Admission Tutor, Course Director (Other Programmes), Associate Professor, Mathematical & Theoretical Particle Physics in the Department of Mathematical Sciences | +44 (0) 191 33 43064 |
Research interests
- integrable systems
- mathematical physics
- string theory
Esteem Indicators
- 2000: EPSRC College Member:
- 2000: 'Networks': 'Participant in network "UK Meetings on Integrable Boundary QFT"
Participant in network "Northern British Mathematical Physics Seminars"Member of European 5th framework Network "EUCLID" (collaboration between Durham, Annecy, Lyon, Montpellier, Berlin, Bonn, Budapest, Bologna, Trieste, Santiago, Kings College London)'
Publications
Chapter in book
Conference Paper
- Bowcock, P. (1994, December). Representation theory of a W algebra from generalized DS reduction
- Barrett, J. K., & Bowcock, P. (2004, December). Using D-strings to describe monopole scattering
- Bowcock, P., Feigin, B., Semikhatov, A., & Taormina, A. (2000, December). sl-hat(2|1) and D-hat(2|1,alpha) as vertex operator extensions of dual affine sl(2) algebras
- Bowcock, P., & Tzamtzis, G. (2002, December). The complex sine-Gordon model on a half line
- Barrett, J. K., & Bowcock, P. (2005, December). Using D-strings to describe monopole scattering: Numerical calculations
- Gregory, R., & Bowcock, P. (1991, August). Some problems with two field tunneling. Presented at Particles & Fields 91: Meeting of the Division of Particles & Fields of the APS, Vancouver, Canada
- Bowcock, P. CANONICAL QUANTIZATION OF THE GAUGED WESS-ZUMINO MODEL
- Bowcock, P., & Goddard, P. VIRASORO ALGEBRAS WITH CENTRAL CHARGE c < 1
Journal Article
- Corrigan, E., Bowcock, P., Dorey, P., & Rietdijk, R. (online). Classically integrable boundary conditions for affine Toda field theories, DTP-94/57
- Bristow, R., & Bowcock, P. (2017). Momentum conserving defects in affine Toda field theories. Journal of High Energy Physics, 2017(5), Article 153. https://doi.org/10.1007/jhep05%282017%29153
- Ciavarella, A., & Bowcock, P. (2010). Boundary Giant Magnons and Giant Gravitons. Journal of High Energy Physics, 2010(09), Article 072. https://doi.org/10.1007/jhep09%282010%29072
- Bowcock, P., & Umpleby, J. M. (2009). Defects and Dressed Boundaries in Complex Sine-Gordon Theory. Journal of High Energy Physics, 2009(01), Article 008. https://doi.org/10.1088/1126-6708/2009/01/008
- Bowcock, P., Foster, D., & Sutcliffe, P. (2009). Q-balls, Integrability and Duality. Journal of Physics A: Mathematical and Theoretical, 42(8), Article 085403. https://doi.org/10.1088/1751-8113/42/8/085403
- Bowcock, P., & Umpleby, J. (2008). Quantum complex sine-Gordon dressed boundaries. Journal of High Energy Physics, 2008(11), Article 038. https://doi.org/10.1088/1126-6708/2008/11/038
- Bowcock, P., & Tzamtzis, G. (2007). Quantum complex sine-Gordon model on a half line. Journal of High Energy Physics, 2007(11), Article 018. https://doi.org/10.1088/1126-6708/2007/11/018
- Bowcock, P., Corrigan, E., & Zambon, C. (2005). Some aspects of jump-defects in the quantum sine-Gordon model. Journal of High Energy Physics, 2005(08), Article 023. https://doi.org/10.1088/1126-6708/2005/08/023
- Bowcock, P., Corrigan, E., & Zambon, C. (2004). Classically integrable field theories with defects. International Journal of Modern Physics A, 19(supp02), 82-91. https://doi.org/10.1142/s0217751x04020324
- Bowcock, P., Corrigan, E., & Zambon, C. (2004). Affine Toda field theories with defects. Journal of High Energy Physics, 2004(01), Article 056. https://doi.org/10.1088/1126-6708/2004/01/056
- Bowcock, P., & Perkins, M. (2003). Aspects of classical backgrounds and scattering for affine Toda theory on a half-line. Journal of High Energy Physics, 2003(02), Article 016. https://doi.org/10.1088/1126-6708/2003/02/016
- Bowcock, P., Feigin, B., Semikhatov, A., & Taormina, A. (2000). Affine sl(2/1) and affine D(2/1;alpha) as vertex operator extensions of dual affine sl(2) algebras. Communications in Mathematical Physics, 214, 495-545. https://doi.org/10.1007/pl00005536
- Bowcock, P., Charmousis, C., & Gregory, R. (2000). General brane cosmologies and their global spacetime structure. Classical and Quantum Gravity, 17, 4745-4763. https://doi.org/10.1088/0264-9381/17/22/313
- Bowcock, P., Hayes, M. R., & Taormina, A. (1999). Parafermionic representation of the affine sl(2|1,C) algebra at fractional level. Physics Letters B, 468(3-4), 239-243. https://doi.org/10.1016/S0370-2693%2899%2901251-4
- Perkins, M., & Bowcock, P. (1999). Quantum corrections to the classical reflection factor in a(2)(1) Toda field theory. Nuclear Physics B, 538(3), 612-630. https://doi.org/10.1016/S0550-3213%2898%2900707-X
- Bowcock, P., & Perkins, M. (1999). Quantum corrections to the classical reflection factor in a2(1) Toda field theory. Nuclear Physics B, 538(3), 612-630. https://doi.org/10.1016/s0550-3213%2898%2900707-x
- Bowcock, P. (1998). Classical backgrounds and scattering for affine Toda theory on a half-line. Journal of High Energy Physics, 1998(05), Article 008. https://doi.org/10.1088/1126-6708/1998/05/008
- Bowcock, P. (1998). Classical backgrounds and scattering for affine Toda theory on a half-line. Journal of High Energy Physics, 1998(5), Article 008. https://doi.org/10.1088/1126-6708/1998/05/008
- Bowcock, P., Hayes, M., & Taormina, A. (1998). Characters of admissible representations of the affine superalgebra sl(2|1). Nuclear Physics B, 510(3), 739-763. https://doi.org/10.1016/S0550-3213%2897%2900542-7
- Bowcock, P., Hayes, M., & Taormina, A. (1998). Characters of admissible representations of the affine superalgebra sl(2/1;C). Nuclear Physics B, B510(3), 739-763
- Bowcock, P., & Taormina, A. (1997). Representation theory of the affine Lie superalgebra SL(2|1:C) at fractional level. Communications in Mathematical Physics, 185, 467-493
- Bowcock, P., & Taormina, A. (1997). Representation Theory of the Affine Lie Superalgebra at Fractional Level. Communications in Mathematical Physics, 185(2), 467-493. https://doi.org/10.1007/s002200050099
- Bowcock, P., Koktava, R.-L. K., & Taormina, A. (1996). Wakimoto modules for the affine superalgebra sl(2/1) and non-critical N = 2 Strings. Physics Letters B, 388(2), 303-308. https://doi.org/10.1016/s0370-2693%2896%2901103-3
- Bowcock, P., Corrigan, E., & Rietdijk, R. (1996). Background field boundary conditions for affine Toda field theories. Nuclear Physics B, 465(1-2), 350-364. https://doi.org/10.1016/0550-3213%2896%2900050-8
- Bowcock, P., Corrigan, E., Dorey, P., & Rietdijk, R. (1995). Classically integrable boundary conditions for affine Toda field theories. Nuclear Physics B, 445(2-3), 469-500. https://doi.org/10.1016/0550-3213%2895%2900153-j
- Bowcock, P., & Watts, G. (1994). Null vectors, three point and four point functions in conformal field theory
- Bowcock, P., & Watts, G. M. T. (1992). Null vectors of the W(3) algebra. Physics Letters B, 297(3-4), 282-288. https://doi.org/10.1016/0370-2693%2892%2991263-9
- Bowcock, P. (1992). Exceptional superconformal algebras. Nuclear Physics B, 381(1-2), 415-430. https://doi.org/10.1016/0550-3213%2892%2990654-T
- Bowcock, P., & Watts, G. (1992). On the classification of quantum W algebras. Nuclear Physics B, 379(1-2), 63-95. https://doi.org/10.1016/0550-3213%2892%2990590-8
- Bowcock, P., & Gregory, R. (1991). Multidimensional tunneling and complex momentum. Physical Review D, 44, 1774-1785
- Bowcock, P. (1991). Quasi-primary fields and associativity of chiral algebras. Nuclear Physics B, 356(2), 367-386. https://doi.org/10.1016/0550-3213%2891%2990314-N
- Bowcock, P., & Goddard, P. (1988). Coset constructions and extended conformal algebras. Nuclear Physics B, 305(4), 685-709. https://doi.org/10.1016/0550-3213%2888%2990122-8