Staff profile
Overview
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- Cluster algebras
- Coxeter groups
- Hyperbolic geometry
Publications
Journal Article
- Duffield, D., & Tumarkin, P. Categorifications of non-integer quivers: types I_2(2n)
- Felikson, A., & Tumarkin, P. (online). Cluster algebras of finite mutation type with coefficients. Journal of combinatorial algebra, https://doi.org/10.4171/JCA/92
- Felikson, A., Tumarkin, P., & Yildirim, E. (in press). Polytopal realizations of non-crystallographic associahedra. Algebraic combinatorics,
- Duffield, D. D., & Tumarkin, P. (2024). Categorifications of non-integer quivers: types H_4, H_3 and I_2(2n + 1). Representation Theory, 28(7), https://doi.org/10.1090/ert/671
- Felikson, A., & Tumarkin, P. (2023). Mutation-finite quivers with real weights. Forum of Mathematics, Sigma, 11, Article e9. https://doi.org/10.1017/fms.2023.8
- Canakci, I., Garcia Elsener, A., Felikson, A., & Tumarkin, P. (2022). Friezes for a pair of pants. Séminaire lotharingien de combinatoire, 86B, Article 32
- Felikson, A., Lawson, J., Shapiro, M., & Tumarkin, P. (2021). Cluster algebras from surfaces and extended affine Weyl groups. Transformation Groups, 26(2), 501-535. https://doi.org/10.1007/s00031-021-09647-y
- Felikson, A., & Tumarkin, P. (2019). Geometry of mutation classes of rank 3 quivers. Arnold Mathematical Journal, 5(1), 37-55. https://doi.org/10.1007/s40598-019-00101-2
- Canakci, I., & Tumarkin, P. (2019). Bases for cluster algebras from orbifolds with one marked point. Algebraic combinatorics, 2(3), 355-365. https://doi.org/10.5802/alco.48
- Felikson, A., & Tumarkin, P. (2018). Acyclic cluster algebras, reflection groups, and curves on a punctured disc. Advances in Mathematics, 340, 855-882. https://doi.org/10.1016/j.aim.2018.10.020
- Demonet, L., Plamondon, P.-G., Rupel, D., Stella, S., & Tumarkin, P. (2018). SL(2)-tilings do not exist in higher dimensions (mostly). Séminaire lotharingien de combinatoire, 76, Article B76d
- Felikson, A., & Tumarkin, P. (2017). Bases for cluster algebras from orbifolds. Advances in Mathematics, 318, 191-232. https://doi.org/10.1016/j.aim.2017.07.025
- Felikson, A., & Tumarkin, P. (2016). Coxeter groups, quiver mutations and geometric manifolds. Journal of the London Mathematical Society, 94(1), 38-60. https://doi.org/10.1112/jlms/jdw023
- Stella, S., & Tumarkin, P. (2016). Exchange relations for finite type cluster algebras with acyclic initial seed and principal coefficients. Symmetry, integrability and geometry: methods and applications, 12, Article 067. https://doi.org/10.3842/sigma.2016.067
- Felikson, A., & Tumarkin, P. (2016). Coxeter groups and their quotients arising from cluster algebras. International Mathematics Research Notices, 2016(17), 5135-5186. https://doi.org/10.1093/imrn/rnv282
- Felikson, A., Shapiro, M., Thomas, H., & Tumarkin, P. (2014). Growth rate of cluster algebras. Proceedings of the London Mathematical Society, 109(3), 653-675. https://doi.org/10.1112/plms/pdu010
- Felikson, A., Fintzen, J., & Tumarkin, P. (2014). Reflection subgroups of odd-angled Coxeter groups. Journal of Combinatorial Theory, Series A, 126, 92-127. https://doi.org/10.1016/j.jcta.2014.04.008
- Felikson, A., & Tumarkin, P. (2014). Essential hyperbolic Coxeter polytopes. Israel Journal of Mathematics, 199(1), 113-161. https://doi.org/10.1007/s11856-013-0046-3
- Felikson, A., Shapiro, M., & Tumarkin, P. (2012). Cluster algebras and triangulated orbifolds. Advances in Mathematics, 231(5), 2953-3002. https://doi.org/10.1016/j.aim.2012.07.032
- Felikson, A., Shapiro, M., & Tumarkin, P. (2012). Skew-symmetric cluster algebras of finite mutation type. Journal of the European Mathematical Society, 14(4), 1135-1180. https://doi.org/10.4171/jems/329
- Felikson, A., & Tumarkin, P. (2012). Hyperbolic subalgebras of hyperbolic Kac-Moody algebras. Transformation Groups, 17(1), 87-122. https://doi.org/10.1007/s00031-011-9169-y
- Felikson, A., Shapiro, M., & Tumarkin, P. (2012). Cluster algebras of finite mutation type via unfoldings. International Mathematics Research Notices, 2012(8), 1768-1804. https://doi.org/10.1093/imrn/rnr072
- Dutour Sikirić, M., Felikson, A., & Tumarkin, P. (2011). Automorphism groups of root systems matroids. European Journal of Combinatorics, 32(3), 383-389. https://doi.org/10.1016/j.ejc.2010.11.003
- Felikson, A., & Tumarkin, P. (2010). Reflection subgroups of Coxeter groups. Transactions of the American Mathematical Society, 362(2), 847-858. https://doi.org/10.1090/s0002-9947-09-04859-4
- Felikson, A., & Tumarkin, P. (2009). Coxeter polytopes with a unique pair of non-intersecting facets. Journal of Combinatorial Theory, Series A, 116(4), 875-902. https://doi.org/10.1016/j.jcta.2008.10.008
- Felikson, A., Retakh, A., & Tumarkin, P. (2008). Regular subalgebras of affine Kac–Moody algebras. Journal of Physics A: Mathematical and Theoretical, 41(36), Article 365204. https://doi.org/10.1088/1751-8113/41/36/365204
- Felikson, A., & Tumarkin, P. (2008). On hyperbolic Coxeter polytopes with mutually intersecting facets. Journal of Combinatorial Theory, Series A, 115(1), 121-146. https://doi.org/10.1016/j.jcta.2007.04.006
Supervision students
Qizhen Sang
1P
Xintong Wang
2P