Staff profile
Overview
Affiliation | Telephone |
---|---|
Professor in the Department of Engineering | +44 (0) 191 33 44174 |
Biography
Positions Available
The following funded PhD project is available: Evaporating sessile droplets: internal flow and pattern formation.
Publications
Chapter in book
Journal Article
- Ortega-Chavez, R., Gan, L., & Gaskell, P. (in press). Swirl momentum control in vortex rings generated experimentally. Journal of Fluid Mechanics,
- Scholle, M., Ismail‐Sutton, S., & Gaskell, P. H. (2025). A Lagrangian for Compressible Flow Focusing on Dissipation due to Thermal Conduction. Studies in Applied Mathematics, 154(1), Article e12791. https://doi.org/10.1111/sapm.12791
- Ortega Chavez, R., Gan, L., & Gaskell, P. (2023). Formation and evolution of vortex rings with weak to moderate swirl. Journal of Fluid Mechanics, 967, Article A16
- Zhang, Z., Hamzehbahmani, H., & Gaskell, P. (2023). A new hysteresis simulation method for interpreting the magnetic properties of non-oriented electrical steels. Journal of Magnetism and Magnetic Materials, 576, Article 170763. https://doi.org/10.1016/j.jmmm.2023.170763
- Daly, G., Veremieiev, S., & Gaskell, P. (2022). Gravity-driven film flow down a uniformly heated smoothly corrugated rigid substrate. Journal of Fluid Mechanics, 930, Article A23. https://doi.org/10.1017/jfm.2021.920
- Ibrahim, A., Veremieiev, S., & Gaskell, P. (2022). An advanced, comprehensive thermochemical equilibrium model of a downdraft biomass gasifier. Renewable Energy, 194, https://doi.org/10.1016/j.renene.2022.05.069
- Zhang, Z., Hamzehbahmani, H., & Gaskell, P. H. (2022). A Novel Dynamic Hysteresis Model for Grain-Oriented Electrical Steels Based on Magnetic Domain Theory. IEEE Transactions on Magnetics, 58(1), 1-9. https://doi.org/10.1109/tmag.2021.3128765
- Scholle, M., Marner, F., & Gaskell, P. (2020). A first integral form of the energy-momentum equations for viscous flow, with comparisons drawn to classical fluid flow theory. European Journal of Mechanics - B/Fluids, 84, 262-271. https://doi.org/10.1016/j.euromechflu.2020.06.010
- Scholle, M., Marner, F., & Gaskell, P. (2020). Potential Fields in Fluid Mechanics: A Review of Two Classical Approaches and Related Recent Advances. Water, 12(5), Article 1241. https://doi.org/10.3390/w12051241
- Scholle, M., Gaskell, P. H., & Marner, F. (2019). A Potential Field Description for Gravity-Driven Film Flow over Piece-Wise Planar Topography. Fluids, 4(2), Article 82. https://doi.org/10.3390/fluids4020082
- Marner, F., Scholle, M., Herrmann, D., & Gaskell, P. (2019). Competing Lagrangians for incompressible and compressible viscous flow. Royal Society Open Science, 6(1), Article 181595. https://doi.org/10.1098/rsos.181595
- Abdalla, A., Veremieiev, S., & Gaskell, P. (2018). Steady bilayer channel and free-surface isothermal film flow over topography. Chemical Engineering Science, 181, 215-236. https://doi.org/10.1016/j.ces.2018.01.031
- Scholle, M., Gaskell, P., & Marner, F. (2018). Exact integration of the unsteady incompressible Navier-Stokes equations, gauge criteria, and applications. Journal of Mathematical Physics, 59(4), Article 043101. https://doi.org/10.1063/1.5031119
- Marner, F., Gaskell, P., & Scholle, M. (2017). A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system. Journal of Mathematical Physics, 58(4), Article 043102. https://doi.org/10.1063/1.4980086
- Shah, R., Gaskell, P., & Veremieiev, S. (2017). Free Surface Thin Film Flow of a Sisko’s Fluid over a Surface Topography. Journal of applied fluid mechanics, 10(1), 307-317. https://doi.org/10.18869/acadpub.jafm.73.238.26727
- Bradley, D., Gaskell, P. H., Gu, X., & Palacios, A. (2016). Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combustion and Flame, 164, 400-409. https://doi.org/10.1016/j.combustflame.2015.09.009
- Elbadawy, I., Gaskell, P. H., Lawes, M., & Thompson, H. M. (2015). Numerical investigation of the effect of ambient turbulence on pressure swirl spray characteristics. International Journal of Multiphase Flow, 77, 271-284. https://doi.org/10.1016/j.ijmultiphaseflow.2015.06.008
- Veremieiev, S., Thompson, H., & Gaskell, P. (2015). Free-surface film flow over topography: full three-dimensional finite element solutions. Computers and Fluids, 122, 66-82. https://doi.org/10.1016/j.compfluid.2015.08.016
- Gilkeson, C., Toropov, V., Thompson, H., Wilson, M., Foxley, N., & Gaskell, P. (2014). Dealing with numerical noise in CFD-based design optimization. Computers and Fluids, 94, 84-97. https://doi.org/10.1016/j.compfluid.2014.02.004
- Veremieiev, S., Brown, A., Gaskell, P., Glass, C., Kapur, N., & Thompson, H. (2014). Modelling the flow of droplets of bio-pesticide on foliage. Interfacial phenomena and heat transfer, 2(1), 1-14. https://doi.org/10.1615/interfacphenomheattransfer.2014010162
- Slade, D., Veremieiev, S., Lee, Y., & Gaskell, P. (2013). Gravity-driven thin film flow: The influence of topography and surface tension gradient on rivulet formation. Chemical Engineering and Processing: Process Intensification, 68, 7-12. https://doi.org/10.1016/j.cep.2012.07.003
- Veremieiev, S., Thompson, H., Scholle, M., Lee, Y., & Gaskell, P. (2012). Electrified thin film flow at finite Reynolds number on planar substrates featuring topography. International Journal of Multiphase Flow, 44, 48-69. https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.010
- Veremieiev, S., Thompson, H., Lee, Y., & Gaskell, P. (2011). Inertial two- and three-dimensional thin film flow over topography. Chemical Engineering and Processing: Process Intensification, 50(5-6), 537-542. https://doi.org/10.1016/j.cep.2010.08.008
- Scholle, M., Haas, A., & Gaskell, P. (2011). A first integral of Navier–Stokes equations and its applications. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2125), 127-143. https://doi.org/10.1098/rspa.2010.0157
- Veremieiev, S., Thompson, H., Lee, Y., & Gaskell, P. (2010). Inertial thin film flow on planar surfaces featuring topography. Computers and Fluids, 39(3), 431-450. https://doi.org/10.1016/j.compfluid.2009.09.007
- Scholle, M., Haas, A., Aksel1, N., Wilson, M., Thompson, H., & Gaskell, P. (2008). Competing geometric and inertial effects on local flow structure in thick gravity-driven fluid films. Physics of Fluids, 20(12), Article 123101. https://doi.org/10.1063/1.3041150
Supervision students
Ahmad Ibrahim
Research Postgraduate – Fluid Mechanics Node
Charles Drewer
Research Postgraduate – Fluid Mechanics Node
Geng Chen
Research Postgraduate – Fluid Mechanics Node
Osama Akabat
Research Postgraduate - Fluid Mechanics Node
Sara Ismail-Sutton
Research Postgraduate – Fluid Mechanics Node