Staff profile
Overview
Professor Michael Spannowsky
Director of Institute of Particle Physics Phenomenology
Affiliation | Telephone |
---|---|
Director of Institute of Particle Physics Phenomenology in the Department of Physics | +44 (0) 191 33 43636 |
Professor in the Department of Physics | +44 (0) 191 33 43636 |
Director in the Institute for Particle Physics Phenomenology |
Publications
Conference Paper
Journal Article
- Contino, R., & Spannowsky, M. (online). Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies
- Golling, T., Spannowsky, M., & Khoze, V. (online). Physics at a 100 TeV pp collider: beyond the Standard Model phenomena
- Khoze, V. V., Reiness, J., Spannowsky, M., & Waite, P. (online). Precision measurements for the Higgsploding Standard Model
- Fromm, M., Philipsen, O., Spannowsky, M., & Winterowd, C. (2024). Simulating Z 2 lattice gauge theory with the variational quantum thermalizer. EPJ Quantum Technology, 11(1), 20. https://doi.org/10.1140/epjqt/s40507-024-00232-2
- Rousselot, A., & Spannowsky, M. (2024). Generative invertible quantum neural networks. SciPost Physics, 16(6), Article 146. https://doi.org/10.21468/scipostphys.16.6.146
- Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2024). Hypergraphs in LHC phenomenology — the next frontier of IRC-safe feature extraction. Journal of High Energy Physics, 2024(1), Article 113. https://doi.org/10.1007/jhep01%282024%29113
- Belvedere, A., Englert, C., Kogler, R., & Spannowsky, M. (2024). Dispelling the L myth for the High-Luminosity LHC. The European Physical Journal C, 84(7), Article 715. https://doi.org/10.1140/epjc/s10052-024-13032-w
- Abel, S., Spannowsky, M., & Williams, S. (2024). Simulating quantum field theories on continuous-variable quantum computers. Physical Review A, 110(1), Article 012607. https://doi.org/10.1103/physreva.110.012607
- Bhardwaj, A., Englert, C., Naskar, W., Ngairangbam, V. S., & Spannowsky, M. (2024). Equivariant, safe and sensitive — graph networks for new physics. Journal of High Energy Physics, 2024(7), Article 245. https://doi.org/10.1007/jhep07%282024%29245
- Abel, S., Criado, J. C., & Spannowsky, M. (2024). Training neural networks with universal adiabatic quantum computing. Frontiers in Artificial Intelligence, 7, Article 1368569. https://doi.org/10.3389/frai.2024.1368569
- Araz, J. Y., Spannowsky, M., & Wingate, M. (2024). Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms. Physical Review A, 109(6), Article 062422. https://doi.org/10.1103/physreva.109.062422
- Criado, J. C., Hatton, P. D., Lanza, Á., Schenk, S., & Spannowsky, M. (2024). Charting the free energy landscape of metastable topological magnetic objects. Physical Review B, 109(19), Article 195114. https://doi.org/10.1103/physrevb.109.195114
- Brown, C., Spannowsky, M., Tapper, A., Williams, S., & Xiotidis, I. (2024). Quantum pathways for charged track finding in high-energy collisions. Frontiers in Artificial Intelligence, 7, Article 1339785. https://doi.org/10.3389/frai.2024.1339785
- Anisha, Englert, C., Kogler, R., & Spannowsky, M. (2024). Higgs boson off-shell measurements probe nonlinearities. Physical Review D, 109(9), https://doi.org/10.1103/physrevd.109.095033
- Ngairangbam, V. S., & Spannowsky, M. (2024). Interpretable deep learning models for the inference and classification of LHC data. Journal of High Energy Physics, 2024(5), Article 4. https://doi.org/10.1007/jhep05%282024%29004
- Sakurai, K., & Spannowsky, M. (2024). Three-Body Entanglement in Particle Decays. Physical Review Letters, 132(15), Article 151602. https://doi.org/10.1103/PhysRevLett.132.151602
- Banerjee, U., Chakrabortty, J., Englert, C., Naskar, W., Rahaman, S. U., & Spannowsky, M. (2024). EFT, decoupling, Higgs boson mixing, and higher dimensional operators. Physical Review D, 109(5), Article 055035. https://doi.org/10.1103/physrevd.109.055035
- Adhikary, A., Banerjee, S., Barman, R. K., Batell, B., Bhattacherjee, B., Bose, C., Qian, Z., & Spannowsky, M. (2024). Prospects for exotic h→4τ decays in single and di-Higgs boson production at the LHC and future hadron colliders. Physical Review D, 109(5), Article 055008. https://doi.org/10.1103/physrevd.109.055008
- Sevillano Muñoz, S., Copeland, E. J., Millington, P., & Spannowsky, M. (2024). FeynMG: A FeynRules extension for scalar-tensor theories of gravity. Computer Physics Communications, 296, Article 109035. https://doi.org/10.1016/j.cpc.2023.109035
- Araz, J. Y., & Spannowsky, M. (2023). Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection. Physical Review A, 108(6), Article 062422. https://doi.org/10.1103/physreva.108.062422
- Gupta, R., Jaeckel, J., & Spannowsky, M. (2023). Probing Poincaré violation. Journal of High Energy Physics, 2023(11), 26. https://doi.org/10.1007/jhep11%282023%29026
- Potvliege, R. M., Nicolson, A., Jones, M. P. A., & Spannowsky, M. (2023). Deuterium spectroscopy for enhanced bounds on physics beyond the standard model. Physical Review A, 108(5), Article 052825. https://doi.org/10.1103/physreva.108.052825
- Heighton, R., Heurtier, L., & Spannowsky, M. (2023). Hunting for neutral leptons with ultrahigh-energy neutrinos. Physical Review D, 108(5), Article 055009. https://doi.org/10.1103/physrevd.108.055009
- Araz, J. Y., Schenk, S., & Spannowsky, M. (2023). Toward a quantum simulation of nonlinear sigma models with a topological term. Physical Review A, 107(3), https://doi.org/10.1103/physreva.107.032619
- Anisha, Das Bakshi, S., Banerjee, S., Biekötter, A., Chakrabortty, J., Patra, S. K., & Spannowsky, M. (2023). Effective limits on single scalar extensions in the light of recent LHC data. Physical Review D, 107(5), Article 055028. https://doi.org/10.1103/physrevd.107.055028
- Banerjee, U., Chakrabortty, J., Englert, C., Rahaman, S. U., & Spannowsky, M. (2023). Integrating out heavy scalars with modified equations of motion: Matching computation of dimension-eight SMEFT coefficients. Physical Review D, 107(5), Article 055007. https://doi.org/10.1103/physrevd.107.055007
- Criado, J. C., & Spannowsky, M. (2023). Qade: solving differential equations on quantum annealers. Quantum Science and Technology, 8(1), Article 015021. https://doi.org/10.1088/2058-9565/acaa51
- Abel, S., Criado, J. C., & Spannowsky, M. (2022). Completely quantum neural networks. Physical Review A, 106(2), Article 022601. https://doi.org/10.1103/physreva.106.022601
- Bandyopadhyay, P., Mitra, M., Padhan, R., Roy, A., & Spannowsky, M. (2022). Secluded dark matter in gauged B − L model. Journal of High Energy Physics, 2022(5), Article 182. https://doi.org/10.1007/jhep05%282022%29182
- Gustafson, G., Prestel, S., Spannowsky, M., & Williams, S. (2022). Collider events on a quantum computer. Journal of High Energy Physics, 2022(11), Article 35. https://doi.org/10.1007/jhep11%282022%29035
- Abel, S., Blance, A., & Spannowsky, M. (2022). Quantum optimization of complex systems with a quantum annealer. Physical Review A, 106(4), https://doi.org/10.1103/physreva.106.042607
- Gellersen, L., Prestel, S., & Spannowsky, M. (2022). Coloring mixed QCD/QED evolution. SciPost Physics, 13(2), https://doi.org/10.21468/scipostphys.13.2.034
- Ngairangbam, V. S., Spannowsky, M., & Takeuchi, M. (2022). Anomaly detection in high-energy physics using a quantum autoencoder. Physical Review D, 105(9), Article 095004. https://doi.org/10.1103/physrevd.105.095004
- Bepari, K., Malik, S., Spannowsky, M., & Williams, S. (2022). Quantum walk approach to simulating parton showers. Physical Review D, 106(5), https://doi.org/10.1103/physrevd.106.056002
- Krippendorf, S., & Spannowsky, M. (2022). A duality connecting neural network and cosmological dynamics. Machine Learning: Science and Technology, 3(3), https://doi.org/10.1088/2632-2153/ac87e9
- Atkinson, O., Bhardwaj, A., Englert, C., Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2022). IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection. Frontiers in Artificial Intelligence, 5, Article 943135. https://doi.org/10.3389/frai.2022.943135
- Konar, P., Ngairangbam, V. S., & Spannowsky, M. (2022). Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm. Journal of High Energy Physics, 2022(2), Article 60. https://doi.org/10.1007/jhep02%282022%29060
- Anisha, Banerjee, U., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2022). Effective connections of aμ , Higgs physics, and the collider frontier. Physical Review D, 105(1), https://doi.org/10.1103/physrevd.105.016019
- Das Bakshi, S., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2022). Landscaping CP-violating BSM scenarios. Nuclear Physics B, 975, https://doi.org/10.1016/j.nuclphysb.2022.115676
- Criado, J. C., Schenk, S., Spannowsky, M., Hatton, P. D., & Turnbull, L. (2022). Simulating anti-skyrmions on a lattice. Scientific Reports, 12, Article 19179. https://doi.org/10.1038/s41598-022-22043-0
- Alvarez, E., Spannowsky, M., & Szewc, M. (2022). Unsupervised Quark/Gluon Jet Tagging With Poissonian Mixture Models. Frontiers in Artificial Intelligence, 5, Article 852970. https://doi.org/10.3389/frai.2022.852970
- Criado, J. C., Khoze, V. V., & Spannowsky, M. (2021). Electroweak skyrmions in the HEFT. Journal of High Energy Physics, 2021(12), Article 26. https://doi.org/10.1007/jhep12%282021%29026
- Gupta, R., Khoze, V., & Spannowsky, M. (2021). Small instantons and the strong CP problem in composite Higgs models. Physical Review D, 104(7), Article 075011. https://doi.org/10.1103/physrevd.104.075011
- Bakshi, S. D., Chakrabortty, J., Prakash, S., Rahaman, S. U., & Spannowsky, M. (2021). EFT diagrammatica: UV roots of the CP-conserving SMEFT. Journal of High Energy Physics, 2021(6), Article 33. https://doi.org/10.1007/jhep06%282021%29033
- Abel, S., & Spannowsky, M. (2021). Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum, 2(1), Article 010349. https://doi.org/10.1103/prxquantum.2.010349
- Schenk, S., & Spannowsky, M. (2021). Exploring instantons in nonlinear sigma models with spin-lattice systems. Physical Review B, 103(14), Article 144436. https://doi.org/10.1103/physrevb.103.144436
- Araz, J. Y., Banerjee, S., Gupta, R. S., & Spannowsky, M. (2021). Precision SMEFT bounds from the VBF Higgs at high transverse momentum. Journal of High Energy Physics, 2021(4), Article 125. https://doi.org/10.1007/jhep04%282021%29125
- Das Bakshi, S., Chakrabortty, J., Englert, C., Spannowsky, M., & Stylianou, P. (2021). CP violation at ATLAS in effective field theory. Physical Review D, 103(5), Article 055008. https://doi.org/10.1103/physrevd.103.055008
- Balaji, S., Spannowsky, M., & Tamarit, C. (2021). Cosmological bubble friction in local equilibrium. Journal of Cosmology and Astroparticle Physics, 2021(03), Article 051. https://doi.org/10.1088/1475-7516/2021/03/051
- Criado, J. C., Khoze, V. V., & Spannowsky, M. (2021). The emergence of electroweak Skyrmions through Higgs bosons. Journal of High Energy Physics, 2021(3), Article 162. https://doi.org/10.1007/jhep03%282021%29162
- Atkinson, O., Bhardwaj, A., Englert, C., Ngairangbam, V. S., & Spannowsky, M. (2021). Anomaly detection with convolutional Graph Neural Networks. Journal of High Energy Physics, 2021(8), https://doi.org/10.1007/jhep08%282021%29080
- Abel, S., Chancellor, N., & Spannowsky, M. (2021). Quantum computing for quantum tunneling. Physical Review D, 103(1), Article 016008. https://doi.org/10.1103/physrevd.103.016008
- Araz, J. Y., & Spannowsky, M. (2021). Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks. Journal of High Energy Physics, 2021(4), Article 296. https://doi.org/10.1007/jhep04%282021%29296
- Khoze, V. V., Milne, D. L., & Spannowsky, M. (2021). Searching for QCD instantons at hadron colliders. Physical Review D, 103(1), Article 014017. https://doi.org/10.1103/physrevd.103.014017
- Blance, A., & Spannowsky, M. (2021). Quantum machine learning for particle physics using a variational quantum classifier. Journal of High Energy Physics, 2021, Article 212. https://doi.org/10.1007/jhep02%282021%29212
- Adam, C., Oles, K., Romanczukiewicz, T., Wereszczynski, A., & Zakrzewski, W. (2021). Spectral walls in multifield kink dynamics. Journal of High Energy Physics, 2021(8), https://doi.org/10.1007/jhep08%282021%29147
- Bepari, K., Malik, S., Spannowsky, M., & Williams, S. (2021). Towards a quantum computing algorithm for helicity amplitudes and parton showers. Physical Review D, 103(7), Article 076020. https://doi.org/10.1103/physrevd.103.076020
- Anisha, Banerjee, U., Chakrabortty, J., Englert, C., & Spannowsky, M. (2021). Extended Higgs boson sectors, effective field theory, and Higgs boson phenomenology. Physical Review D, 103(9), https://doi.org/10.1103/physrevd.103.096009
- Banerjee, U., Chakrabortty, J., Prakash, S., Rahaman, S. U., & Spannowsky, M. (2021). Effective operator bases for beyond Standard Model scenarios: an EFT compendium for discoveries. Journal of High Energy Physics, 2021(1), Article 28. https://doi.org/10.1007/jhep01%282021%29028
- Das Bakshi, S., Chakrabortty, J., & Spannowsky, M. (2021). Classifying standard model extensions effectively with precision observables. Physical Review D, 103(5), Article 056019. https://doi.org/10.1103/physrevd.103.056019
- Amacker, J., Balunas, W., Beresford, L., Bortoletto, D., Frost, J., Issever, C., Liu, J., McKee, J., Micheli, A., Saenz, S. P., Spannowsky, M., & Stanislaus, B. (2020). Higgs self-coupling measurements using deep learning in the bb¯¯bb¯¯ final state. Journal of High Energy Physics, 2020(12), Article 115. https://doi.org/10.1007/jhep12%282020%29115
- Barman, R. K., Englert, C., Gonçalves, D., & Spannowsky, M. (2020). Di-Higgs resonance searches in weak boson fusion. Physical Review D, 102(5), Article 055014. https://doi.org/10.1103/physrevd.102.055014
- Biekötter, A., Chala, M., & Spannowsky, M. (2020). The effective field theory of low scale see-saw at colliders. The European Physical Journal C, 80(8), Article 743. https://doi.org/10.1140/epjc/s10052-020-8339-2
- Englert, C., Jaeckel, J., Spannowsky, M., & Stylianou, P. (2020). Power meets Precision to explore the Symmetric Higgs Portal. Physics Letters B, 806, Article 135526. https://doi.org/10.1016/j.physletb.2020.135526
- Chala, M., Khoze, V. V., Spannowsky, M., & Waite, P. (2019). Mapping the shape of the scalar potential with gravitational waves. International Journal of Modern Physics A, 34(33), Article 1950223
- Butterworth, J. M., Chala, M., Englert, C., Spannowsky, M., & Titov, A. (2019). Higgs phenomenology as a probe of sterile neutrinos. Physical Review D, 100(11), Article 115019. https://doi.org/10.1103/physrevd.100.115019
- Banerjee, S., Gupta, R. S., Reiness, J. Y., & Spannowsky, M. (2019). Resolving the tensor structure of the Higgs coupling to Z bosons via Higgs-strahlung. Physical Review D, 100(11), Article 115004. https://doi.org/10.1103/physrevd.100.115004
- Blance, A., Chala, M., Ramos, M., & Spannowsky, M. (2019). Novel B-decay signatures of light scalars at high energy facilities. Physical Review D, 100(11), Article 115015. https://doi.org/10.1103/physrevd.100.115015
- Gupta, R., Reiness, J., & Spannowsky, M. (2019). All-in-one relaxion: A unified solution to five particle-physics puzzles. Physical Review D, 100(5), Article 055003. https://doi.org/10.1103/physrevd.100.055003
- Prestel, S., & Spannowsky, M. (2019). HYTREES: combining matrix elements and parton shower for hypothesis testing. The European Physical Journal C, 79(7), Article 546. https://doi.org/10.1140/epjc/s10052-019-7030-y
- Englert, C., Galler, P., Pilkington, A., & Spannowsky, M. (2019). Approaching robust EFT limits for CP violation in the Higgs sector. Physical Review D, 99(9), Article 095007. https://doi.org/10.1103/physrevd.99.095007
- Chala, M., Santiago, J., & Spannowsky, M. (2019). Constraining four-fermion operators using rare top decays. Journal of High Energy Physics, 2019(4), Article 14. https://doi.org/10.1007/jhep04%282019%29014
- Khoze, V. V., & Spannowsky, M. (2019). Consistency of Higgsplosion in localizable QFT. Physics Letters B, 790, 466-474. https://doi.org/10.1016/j.physletb.2019.01.052
- Chala, M., Ramos, M., & Spannowsky, M. (2019). Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff. The European Physical Journal C, 79(2), Article 156. https://doi.org/10.1140/epjc/s10052-019-6655-1
- Bernlochner, F. U., Englert, C., Hays, C., Lohwasser, K., Mildner, H., Pilkington, A., Price, D. D., & Spannowsky, M. (2019). Angles on CP-violation in Higgs boson interactions. Physics Letters B, 790, 372-379. https://doi.org/10.1016/j.physletb.2019.01.043
- Englert, C., Galler, P., Harris, P., & Spannowsky, M. (2019). Machine learning uncertainties with adversarial neural networks. The European Physical Journal C, 79(1), Article 4. https://doi.org/10.1140/epjc/s10052-018-6511-8
- Blance, A., Spannowsky, M., & Waite, P. (2019). Adversarially-trained autoencoders for robust unsupervised new physics searches. Journal of High Energy Physics, 2019(10), Article 047. https://doi.org/10.1007/jhep10%282019%29047
- Banerjee, S., Englert, C., Gupta, R. S., & Spannowsky, M. (2018). Probing electroweak precision physics via boosted Higgs-strahlung at the LHC. Physical Review D, 98(9), Article 095012. https://doi.org/10.1103/physrevd.98.095012
- Ferreira de Lima, D. E., Mattelaer, O., & Spannowsky, M. (2018). Searching for processes with invisible particles using a matrix element-based method. Physics Letters B, 787, 100-104. https://doi.org/10.1016/j.physletb.2018.10.044
- Englert, C., Hild, S., & Spannowsky, M. (2018). Particle physics with gravitational wave detector technology. European Physical Society Letters, 123(4), Article 41001. https://doi.org/10.1209/0295-5075/123/41001
- Banerjee, S., Chala, M., & Spannowsky, M. (2018). Top quark FCNCs in extended Higgs sectors. The European Physical Journal C, 78(8), Article 683. https://doi.org/10.1140/epjc/s10052-018-6150-0
- Dey, U. K., Kar, D., Mitra, M., Spannowsky, M., & Vincent, A. C. (2018). Searching for Leptoquarks at IceCube and the LHC. Physical Review D, 98(3), Article 035014. https://doi.org/10.1103/physrevd.98.035014
- Agrawal, P., Mitra, M., Niyogi, S., Shil, S., & Spannowsky, M. (2018). Probing the type-II seesaw mechanism through the production of Higgs bosons at a lepton collider. Physical Review D, 98(1), Article 015024. https://doi.org/10.1103/physrevd.98.015024
- Banerjee, S., Englert, C., Mangano, M. L., Selvaggi, M., & Spannowsky, M. (2018). hh+Jet production at 100 TeV. The European Physical Journal C, 78(4), Article 322. https://doi.org/10.1140/epjc/s10052-018-5788-y
- Lenz, A., Spannowsky, M., & Tetlalmatzi-Xolocotzi, G. (2018). Double-charming Higgs boson identification using machine-learning assisted jet shapes. Physical Review D, 97(1), Article 016001. https://doi.org/10.1103/physrevd.97.016001
- Khoze, V. V., & Spannowsky, M. (2018). Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons. Nuclear Physics B, 926, 95-111. https://doi.org/10.1016/j.nuclphysb.2017.11.002
- Englert, C., Ferretti, G., & Spannowsky, M. (2017). Jet-associated resonance spectroscopy. The European Physical Journal C, 77(12), Article 842. https://doi.org/10.1140/epjc/s10052-017-5416-2
- Di Luzio, L., Gröber, R., & Spannowsky, M. (2017). Maxi-sizing the trilinear Higgs self-coupling: how large could it be?. The European Physical Journal C, 77, Article 788. https://doi.org/10.1140/epjc/s10052-017-5361-0
- Englert, C., Kogler, R., Schulz, H., & Spannowsky, M. (2017). Higgs characterisation in the presence of theoretical uncertainties and invisible decays. The European Physical Journal C, 77(11), Article 789. https://doi.org/10.1140/epjc/s10052-017-5366-8
- Khoze, V. V., & Spannowsky, M. (2017). Higgsploding universe. Physical Review D, 96(7), Article 075042. https://doi.org/10.1103/physrevd.96.075042
- Ruiz, R., Spannowsky, M., & Waite, P. (2017). Heavy neutrinos from gluon fusion. Physical Review D, 96(5), Article 055042. https://doi.org/10.1103/physrevd.96.055042
- Huang, T., No, J., Pernié, L., Ramsey-Musolf, M., Safonov, A., Spannowsky, M., & Winslow, P. (2017). Resonant di-Higgs boson production in the bb¯WW Channel: Probing the electroweak phase transition at the LHC. Physical Review D, 96(3), Article 035007. https://doi.org/10.1103/physrevd.96.035007
- Englert, C., Li, Q., Spannowsky, M., Wang, M., & Wang, L. (2017). VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider. International Journal of Modern Physics A, 32(18), Article 1750106. https://doi.org/10.1142/s0217751x17501068
- Kribs, G. D., Maier, A., Rzehak, H., Spannowsky, M., & Waite, P. (2017). Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction. Physical Review D, 95(9), Article 093004. https://doi.org/10.1103/physrevd.95.093004
- Hays, C., Mitra, M., Spannowsky, M., & Waite, P. (2017). Prospects for new physics in τ→lμμ at current and future colliders. Journal of High Energy Physics, 2017(5), Article 014. https://doi.org/10.1007/jhep05%282017%29014
- No, J. M., & Spannowsky, M. (2017). Boost to h→Zγ: from LHC to future e+e− colliders. Physical Review D, 95(1), Article 075027. https://doi.org/10.1103/physrevd.95.075027
- Englert, C., Schichtel, P., & Spannowsky, M. (2017). Same-sign W pair production in composite Higgs models. Physical Review D, 95(5), Article 055002. https://doi.org/10.1103/physrevd.95.055002
- Mitra, M., Niyogi, S., & Spannowsky, M. (2017). Type-II Seesaw Model and Multilepton Signatures at Hadron Colliders. Physical Review D, 95(3), Article 035042. https://doi.org/10.1103/physrevd.95.035042
- Aaboud, M., Aad, G., Abbott, B., Abdallah, J., Abdinov, O., Abeloos, B., Aben, R., AbouZeid, O., Abraham, N., Abramowicz, H., Abreu, H., Abreu, R., Abulaiti, Y., Acharya, B., Adachi, S., Adamczyk, L., Adams, D., Adelman, J., Adomeit, S., Adye, T., …Zwalinski, L. (2017). Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector. Physics Letters B, 765, 132-153. https://doi.org/10.1016/j.physletb.2016.12.005
- Banerjee, S., Batell, B., & Spannowsky, M. (2017). Invisible decays in Higgs boson pair production. Physical Review D, 95(3), Article 035009. https://doi.org/10.1103/physrevd.95.035009
- Ferreira de Lima, D., Petrov, P., Soper, D., & Spannowsky, M. (2017). Quark-gluon tagging with shower deconstruction: Unearthing dark matter and Higgs couplings. Physical Review D, 95(3), Article 034001. https://doi.org/10.1103/physrevd.95.034001
- Englert, C., Nordström, K., Sakurai, K., & Spannowsky, M. (2017). Perturbative Higgs coupling CP violation, unitarity, and phenomenology. Physical Review D, 95(1), Article 015018. https://doi.org/10.1103/physrevd.95.015018
- Spannowsky, M., & Tamarit, C. (2017). Sphalerons in composite and non-standard Higgs models. Physical Review D, 95(1), Article 015006. https://doi.org/10.1103/physrevd.95.015006
- Englert, C., McCullough, M., & Spannowsky, M. (2016). S-Channel Dark Matter Simplified Models and Unitarity. Physics of the Dark Universe, 14, 48-56. https://doi.org/10.1016/j.dark.2016.09.002
- Altmannshofer, W., Asaka, T., Batell, B., Bezrukov, F., Bondarenko, K., Boyarsky, A., Choi, K.-Y., Corral, C., Craig, N., Curtin, D., Davidson, S., de Gouvêa, A., Dell’Oro, S., deNiverville, P., Bhupal Dev, P., Dreiner, H., Drewes, M., Eijima, S., Essig, R., Fradette, A., …Zurek, K. M. (2016). A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Reports on Progress in Physics, 79(12), Article 124201. https://doi.org/10.1088/0034-4885/79/12/124201
- Jaeckel, J., Khoze, V. V., & Spannowsky, M. (2016). Hearing the signal of dark sectors with gravitational wave detectors. Physical Review D, 94(10), Article 103519. https://doi.org/10.1103/physrevd.94.103519
- Harland-Lang, L., Khoze, V., Ryskin, M., & Spannowsky, M. (2016). Jet activity as a probe of diphoton resonance production. The European Physical Journal C, 76, Article 623. https://doi.org/10.1140/epjc/s10052-016-4471-4
- Mitra, M., Ruiz, R., Scott, D. J., & Spannowsky, M. (2016). Neutrino jets from high-mass WR gauge bosons in TeV-scale left-right symmetric models. Physical Review D, 94(9), Article 095016. https://doi.org/10.1103/physrevd.94.095016
- Brax, P., Burrage, C., Englert, C., & Spannowsky, M. (2016). LHC Signatures Of Scalar Dark Energy. Physical Review D, 94(8), Article 084054. https://doi.org/10.1103/physrevd.94.084054
- Brooijmans, G., Schichtel, P., & Spannowsky, M. (2016). Cosmic ray air showers from sphalerons. Physics Letters B, 761, 213-218. https://doi.org/10.1016/j.physletb.2016.08.030
- Englert, C., Nordström, K., & Spannowsky, M. (2016). Towards resolving strongly-interacting dark sectors at colliders. Physical Review D, 94(5), Article 055028. https://doi.org/10.1103/physrevd.94.055028
- Chisholm, A. S., Kuttimalai, S., Nikolopoulos, K., & Spannowsky, M. (2016). Measuring rare and exclusive Higgs boson decays into light resonances. The European Physical Journal C, 76(9), Article 501. https://doi.org/10.1140/epjc/s10052-016-4345-9
- Schlaffer, M., Spannowsky, M., & Weiler, A. (2016). Searching for supersymmetry scalelessly. The European Physical Journal C, 76(8), Article 457. https://doi.org/10.1140/epjc/s10052-016-4299-y
- Backović, M., Kulkarni, S., Mariotti, A., Sessolo, E. M., & Spannowsky, M. (2016). Cornering diphoton resonance models at the LHC. Journal of High Energy Physics, 2016(08), Article 018. https://doi.org/10.1007/jhep08%282016%29018
- Dolan, M. J., Spannowsky, M., Wang, Q., & Yu, Z.-H. (2016). Determining the quantum numbers of simplified models in tt¯X production at the LHC. Physical Review D, 94(1), Article 015025. https://doi.org/10.1103/physrevd.94.015025
- Englert, C., Kogler, R., Schulz, H., & Spannowsky, M. (2016). Higgs coupling measurements at the LHC. The European Physical Journal C, 76(7), Article 393. https://doi.org/10.1140/epjc/s10052-016-4227-1
- Banerjee, S., Bhattacherjee, B., Mitra, M., & Spannowsky, M. (2016). The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC. Journal of High Energy Physics, 2016(07), Article 059. https://doi.org/10.1007/jhep07%282016%29059
- Spannowsky, M., & collaboration, A. (2016). Identification of high transverse momentum top quarks in pp collisions at s√=8s=8 TeV with the ATLAS detector. Journal of High Energy Physics, 2016(06), Article 093. https://doi.org/10.1007/jhep06%282016%29093
- Ellis, J., Sakurai, K., & Spannowsky, M. (2016). Search for Sphalerons: IceCube vs. LHC. Journal of High Energy Physics, 2016(05), Article 085. https://doi.org/10.1007/jhep05%282016%29085
- Englert, C., Mattelaer, O., & Spannowsky, M. (2016). Measuring the Higgs-bottom coupling in weak boson fusion. Physics Letters B, 756, 103-108. https://doi.org/10.1016/j.physletb.2016.02.074
- Englert, C., Rosenfeld, R., Spannowsky, M., & Tonero, A. (2016). New physics and signal-background interference in associated pp → HZ production. European Physical Society Letters, 114(3), Article 31001. https://doi.org/10.1209/0295-5075/114/31001
- Harris, P., Khoze, V. V., Spannowsky, M., & Williams, C. (2016). Closing up on Dark Sectors at colliders: from 14 to 100 TeV. Physical Review D, 93(5), Article 054030. https://doi.org/10.1103/physrevd.93.054030
- Jaeckel, J., & Spannowsky, M. (2016). Probing MeV to 90 GeV axion-like particles with LEP and LHC. Physics Letters B, 753, 482-487. https://doi.org/10.1016/j.physletb.2015.12.037
- Moretti, N., Petrov, P., Pozzorini, S., & Spannowsky, M. (2016). Measuring the signal strength in tt¯HwithH→bb¯. Physical Review D, 93(1), Article 014019. https://doi.org/10.1103/physrevd.93.014019
- Englert, C., McCullough, M., & Spannowsky, M. (2016). Combining LEP and LHC to bound the Higgs Width. Nuclear Physics B, 902, 440-457. https://doi.org/10.1016/j.nuclphysb.2015.11.017
- Casolino, M., Farooque, T., Juste, A., Liu, T., & Spannowsky, M. (2015). Probing a light CP-odd scalar in di-top-associated production at the LHC. The European Physical Journal C, 75, Article 498. https://doi.org/10.1140/epjc/s10052-015-3708-y
- Khoze, V. V., Ro, G., & Spannowsky, M. (2015). Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeV. Physical Review D, 92(7), Article 075006. https://doi.org/10.1103/physrevd.92.075006
- Gonçalves, D., Krauss, F., & Spannowsky, M. (2015). Augmenting the diboson excess for the LHC Run II. Physical Review D, 92(5), https://doi.org/10.1103/physrevd.92.053010
- Adams, D., Arce, A., Asquith, L., Backovic, M., Barillari, T., Berta, P., Bertolini, D., Buckley, A., Butterworth, J., Camacho Toro, R., Caudron, J., Chien, Y.-T., Cogan, J., Cooper, B., Curtin, D., Debenedetti, C., Dolen, J., Eklund, M., El Hedri, S., Ellis, S., …Young, C. (2015). Towards an Understanding of the Correlations in Jet Substructure. The European Physical Journal C, 75(9), Article 409. https://doi.org/10.1140/epjc/s10052-015-3587-2
- Englert, C., Harris, P., Spannowsky, M., & Takeuchi, M. (2015). Unitarity-controlled resonances after the Higgs boson discovery. Physical Review D, 92(1), Article 013003. https://doi.org/10.1103/physrevd.92.013003
- Backović, M., Mariotti, A., & Spannowsky, M. (2015). Signs of Tops from Highly Mixed Stops. Journal of High Energy Physics, 2015(06), Article 122. https://doi.org/10.1007/jhep06%282015%29122
- Englert, C., Soteq, Y., & Spannowsky, M. (2015). Off-Shell Higgs Coupling Measurements in BSM scenarios. Journal of High Energy Physics, 2015(05), Article 145. https://doi.org/10.1007/jhep05%282015%29145
- Englert, C., Low, I., & Spannowsky, M. (2015). On-shell interference effects in Higgs boson final states. Physical Review D, 91(7), Article 074029. https://doi.org/10.1103/physrevd.91.074029
- Englert, C., Krauss, F., Spannowsky, M., & Thompson, J. (2015). Di-Higgs phenomenology in t¯thh: The forgotten channel. Physics Letters B, 743, 93-97. https://doi.org/10.1016/j.physletb.2015.02.041
- Harris, P., Khoze, V. V., Spannowsky, M., & Williams, C. (2015). Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach. Physical Review D, 91(5), https://doi.org/10.1103/physrevd.91.055009
- Barr, A. J., Dolan, M. J., Englert, C., Ferreira de Lima, D. E., & Spannowsky, M. (2015). Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider. Journal of High Energy Physics, 2015(02), Article 016. https://doi.org/10.1007/jhep02%282015%29016
- Englert, C., & Spannowsky, M. (2015). Effective Theories and Measurements at Colliders. Physics Letters B, 740, 8-15. https://doi.org/10.1016/j.physletb.2014.11.035
- Spannowsky, M., & Stoll, M. (2015). Tracking New Physics at the LHC and beyond. Physical Review D, D92(5), https://doi.org/10.1103/physrevd.92.054033
- Dolan, M. J., Englert, C., Greiner, N., Nordstrom, K., & Spannowsky, M. (2015). hhjj production at the LHC. The European Physical Journal C, 75(8), Article 387. https://doi.org/10.1140/epjc/s10052-015-3622-3
- Banerjee, S., Mitra, M., & Spannowsky, M. (2015). Searching for a Heavy Higgs boson in a Higgs-portal B-L Model. Physical Review D, D92(5), https://doi.org/10.1103/physrevd.92.055013
- Soper, D. E., Spannowsky, M., Wallace, C., & Tait, T. M. (2014). Scattering of Dark Particles with Light Mediators. Physical Review D, 90(11), Article 115005. https://doi.org/10.1103/physrevd.90.115005
- Schlaffer, M., Spannowsky, M., Takeuchi, M., Weiler, A., & Wymant, C. (2014). Boosted Higgs Shapes. The European Physical Journal C, 74(10), https://doi.org/10.1140/epjc/s10052-014-3120-z
- Dolan, M. J., Harris, P., Jankowiak, M., & Spannowsky, M. (2014). Constraining CP-violating Higgs sectors at the LHC using gluon fusion. Physical Review D, 90(7), Article 073008. https://doi.org/10.1103/physrevd.90.073008
- Gutierrez Ortiz, N., Ferrando, J., Kar, D., & Spannowsky, M. (2014). Reconstructing singly produced top partners in decays to Wb. Physical Review D, 90(7), Article 075009. https://doi.org/10.1103/physrevd.90.075009
- Englert, C., & Spannowsky, M. (2014). Limitations and opportunities of off-shell coupling measurements. Physical Review D, 90(5), Article 053003. https://doi.org/10.1103/physrevd.90.053003
- Ferreira de Lima, D., Papaefstathiou, A., & Spannowsky, M. (2014). Standard model Higgs boson pair production in the ( bb¯ )( bb¯ ) final state. Journal of High Energy Physics, 2014(8), Article 030. https://doi.org/10.1007/jhep08%282014%29030
- Buschmann, M., Englert, C., Goncalvec, D., Plehn, T., & Spannowsky, M. (2014). Resolving the Higgs-gluon coupling with jets. Physical Review D, 90(1), Article 013010. https://doi.org/10.1103/physrevd.90.013010
- Andersen, J. R., Rauch, M., & Spannowsky, M. (2014). Dark Sector spectroscopy at the ILC. The European Physical Journal C, 74(6), Article 2908. https://doi.org/10.1140/epjc/s10052-014-2908-1
- Krauss, F., Petrov, P., Schönherr, M., & Spannowsky, M. (2014). Measuring collinear W emissions inside jets. Physical Review D, 89(11), Article 114006. https://doi.org/10.1103/physrevd.89.114006
- Soper, D. E., & Spannowsky, M. (2014). Finding physics signals with event deconstruction. Physical Review D, 89(9), Article 094005. https://doi.org/10.1103/physrevd.89.094005
- Bœhm, C., Dolan, M. J., McCabe, C., & Spannowsky, M. (2014). Extended gamma-ray emission from Coy Dark Matter. Journal of Cosmology and Astroparticle Physics, 2014(05), Article 009. https://doi.org/10.1088/1475-7516/2014/05/009
- Englert, C., Gonçalves, D., & Spannowsky, M. (2014). Nonstandard top substructure. Physical Review D, 89(7), Article 074038. https://doi.org/10.1103/physrevd.89.074038
- Azatov, A., Salvarezza, M., Son, M., & Spannowsky, M. (2014). Boosting Top Partner Searches in Composite Higgs Models. Physical Review D, 89(7), Article 075001. https://doi.org/10.1103/physrevd.89.075001
- Altheimer, A., Arce, A., Asquith, L., Spannowsky, M., & et al. (2014). Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012. The European Physical Journal C, 74(3), Article 2792. https://doi.org/10.1140/epjc/s10052-014-2792-8
- Dolan, M. J., Englert, C., Greiner, N., & Spannowsky, M. (2014). Production of hhjj at the LHC. Physical Review Letters, 112(10), Article 101802. https://doi.org/10.1103/physrevlett.112.101802
- Englert, C., McCullough, M., & Spannowsky, M. (2014). Gluon-initiated associated production boosts Higgs physics. Physical Review D, 89(1), Article 013013. https://doi.org/10.1103/physrevd.89.013013
- Barr, A. J., Dolan, M. J., Englert, C., & Spannowsky, M. (2014). Di-Higgs final states augMT2ed – Selecting hh events at the high luminosity LHC. Physics Letters B, 728, 308-313. https://doi.org/10.1016/j.physletb.2013.12.011
- Schätzel, S., & Spannowsky, M. (2014). Tagging highly boosted top quarks. Physical Review D, 89(1), Article 014007. https://doi.org/10.1103/physrevd.89.014007
- Jaeckel, J., Jankowiak, M., & Spannowsky, M. (2013). LHC probes the hidden sector. Physics of the Dark Universe, 2(3), 111-117. https://doi.org/10.1016/j.dark.2013.06.001
- Englert, C., Re, E., & Spannowsky, M. (2013). Pinning down Higgs triplets at the LHC. Physical Review D, 88(3), Article 035024. https://doi.org/10.1103/physrevd.88.035024
- Englert, C., Gonçalves, D., Nail, G., & Spannowsky, M. (2013). The shape of spins. Physical Review D, 88(1), Article 013016. https://doi.org/10.1103/physrevd.88.013016
- Englert, C., Re, E., & Spannowsky, M. (2013). Triplet Higgs boson collider phenomenology after the LHC. Physical Review D, 87(9), Article 095014. https://doi.org/10.1103/physrevd.87.095014
- Englert, C., Jaeckel, J., Khoze, V., & Spannowsky, M. (2013). Emergence of the electroweak scale through the Higgs portal. Journal of High Energy Physics, 2013(4), Article 60. https://doi.org/10.1007/jhep04%282013%29060
- Spannowsky, M., & Wymant, C. (2013). Making the most of missing transverse energy: Mass reconstruction from collimated decays. Physical Review D, 87(7), Article 074004. https://doi.org/10.1103/physrevd.87.074004
- Soper, D. E., & Spannowsky, M. (2013). Finding top quarks with shower deconstruction. Physical Review D, 87(5), Article 054012. https://doi.org/10.1103/physrevd.87.054012
- Dolan, M. J., Englert, C., & Spannowsky, M. (2013). New Physics in LHC Higgs boson pair production. Physical Review D, 87(5), Article 055002. https://doi.org/10.1103/physrevd.87.055002
- Andersen, J., Englert, C., & Spannowsky, M. (2013). Extracting precise Higgs couplings by using the matrix element method. Physical Review D, 87(1), Article 015019. https://doi.org/10.1103/physrevd.87.015019
- Englert, C., Spannowsky, M., & Wymant, C. (2012). Partially (in)visible Higgs decays at the LHC. Physics Letters B, 718(2), 538-544. https://doi.org/10.1016/j.physletb.2012.11.008
- Dolan, M. J., Englert, C., & Spannowsky, M. (2012). Higgs self-coupling measurements at the LHC. Journal of High Energy Physics, 2012(10), Article 112. https://doi.org/10.1007/jhep10%282012%29112
- al, A. E., & Spannowsky, M. (2012). Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks. Journal of Physics G: Nuclear and Particle Physics, 39(6), Article 063001. https://doi.org/10.1088/0954-3899/39/6/063001
- Englert, C., Jaeckel, J., Re, E., & Spannowsky, M. (2012). Evasive Higgs Boson Maneuvers at the LHC. Physical Review D, Particles and fields, 85(3), Article 035008. https://doi.org/10.1103/physrevd.85.035008
- Dasgupta, M., Khelifa-Kerfa, K., Marzani, S., & Spannowsky, M. (2012). On jet mass distributions in Z+jet and dijet processes at the LHC. Journal of High Energy Physics, 2012(10), https://doi.org/10.1007/jhep10%282012%29126
- Englert, C., Goncalvec Netto, D., Spannowsky, M., & Terning, J. (2012). Constraining the Unhiggs with LHC data. Physical Review D, 86(3), https://doi.org/10.1103/physrevd.86.035010
- Englert, C., Spannowsky, M., & Takeuchi, M. (2012). Measuring Higgs CP and couplings with hadronic event shapes. Journal of High Energy Physics, 2012(6), https://doi.org/10.1007/jhep06%282012%29108
- Joshi, K., Pilkington, A. D., & Spannowsky, M. (2012). The dependency of boosted tagging algorithms on the event colour structure. Physical Review D, 86(11), https://doi.org/10.1103/physrevd.86.114016
- Englert, C., Spannowsky, M., Stancato, D., & Terning, J. (2012). Unconstraining the Unhiggs. Physical Review D, 85(9), https://doi.org/10.1103/physrevd.85.095003
- Chang, S., Gao, Y., & Spannowsky, M. (2012). Enhanced Gamma Ray Signals in Cosmic Proton-Wimp Collisions Due to Hadronization. Journal of Cosmology and Astroparticle Physics, 2012(11), https://doi.org/10.1088/1475-7516/2012/11/053
- Plehn, T., Spannowsky, M., & Takeuchi, M. (2012). How to Improve Top Tagging. Physical Review D, 85(3), https://doi.org/10.1103/physrevd.85.034029
- Plehn, T., Spannowsky, M., & Takeuchi, M. (2012). Stop searches in 2012. Journal of High Energy Physics, 2012(8), https://doi.org/10.1007/jhep08%282012%29091
- Hewett, J. L., Shelton, J., Spannowsky, M., Tait, T. M., & Takeuchi, M. (2011). AtFB meets LHC. Physical Review D, 84(5), Article 054005. https://doi.org/10.1103/physrevd.84.054005
- Soper, D., & Spannowsky, M. (2011). Finding physics signals with shower deconstruction. Physical Review D, 84(7), Article 074002. https://doi.org/10.1103/physrevd.84.074002
- Kribs, G. D., Martin, A., Roy, T. S., & Spannowsky, M. (2010). Discovering the Higgs Boson in New Physics Events using Jet Substructure. Physical Review D, 81(11), Article 111501. https://doi.org/10.1103/physrevd.81.111501
- Plehn, T., Salam, G. P., & Spannowsky, M. (2010). Fat Jets for a Light Higgs Boson. Physical Review Letters, 104(11), Article 111801. https://doi.org/10.1103/physrevlett.104.111801
- Plehn, T., Spannowsky, M., Takeuchi, M., & Zerwas, D. (2010). Stop Reconstruction with Tagged Tops. Journal of High Energy Physics, 2010(10), Article 078. https://doi.org/10.1007/jhep10%282010%29078
Report
Supervision students
Despoina Dimakou
PGR Student
Edwin Herrera Chacon
PGR Student
Puya Mirkarimi
PGR Student
Robert Heighton
PGR Student