Staff profile
Overview
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Biography
I obtained my Ph.D. in 2014 under the supervision of Alex Gamburd at U.C. Santa Cruz, and had postdoctoral positions at I.A.S. Princeton and Yale University.
I'm interested in problems in geometry, random matrix theory, operator algebras, dynamics, and number theory.
I am from Northern Ireland.
Research interests
- Dynamics
- Number Theory
- Spectral Theory
Esteem Indicators
- 2023: Philip Leverhulme Prize:
- 2023: Von Neumann Fellowship, IAS Princeton:
- 2021: ERC Starting Grant:
- 2021: LMS Whitehead Prize: LMS Whitehead prize
Publications
Journal Article
- Louder, L., Magee, M., & Hide, W. (2025). Strongly convergent unitary representations of limit groups. Journal of Functional Analysis, 288(6), Article 110803. https://doi.org/10.1016/j.jfa.2024.110803
- Magee, M., & de la Salle, M. (2024). SL₄ (Z)is not purely matricial field. Comptes Rendus Mathématique, 362(G8), 903-910. https://doi.org/10.5802/crmath.617
- Hide, W., & Magee, M. (2023). Near optimal spectral gaps for hyperbolic surfaces. Annals of Mathematics, 198(2), 791-824. https://doi.org/10.4007/annals.2023.198.2.6
- Magee, M., & Puder, D. (2023). The Asymptotic Statistics of Random Covering Surfaces. Forum of mathematics. Pi, 11, Article e15. https://doi.org/10.1017/fmp.2023.13
- Magee, M., Naud, F., & Puder, D. (2022). A random cover of a compact hyperbolic surface has relative spectral gap 3/16 - ϵ. Geometric And Functional Analysis, 32(3), 595-661. https://doi.org/10.1007/s00039-022-00602-x
- Magee, M., & Naud, F. (2020). Explicit spectral gaps for random covers of Riemann surfaces. Publications mathématiques de l'IHÉS, 132(1), 137-179. https://doi.org/10.1007/s10240-020-00118-w
- Magee, M., & Puder, D. (2019). Matrix group integrals, surfaces, and mapping class groups I: U(n). Inventiones Mathematicae, 218(2), 341-411. https://doi.org/10.1007/s00222-019-00891-4
- Gamburd, A., Magee, M., & Ronan, R. (2019). An asymptotic formula for integer points on Markoff-Hurwitz varieties. Annals of Mathematics, 190(3), 751-809. https://doi.org/10.4007/annals.2019.190.3.2
- Magee, M. (2015). Quantitative spectral gap for thin groups of hyperbolic isometries. Journal of the European Mathematical Society, 17(1), 151-187. https://doi.org/10.4171/jems/500
Supervision students
Anitej Banerjee
2P
Ewan Cassidy
3P