Staff profile
Overview
Dr Marija Zamaklar
Associate Professor, Mathematical & Theoretical Physics
Affiliation | Telephone |
---|---|
Associate Professor, Mathematical & Theoretical Physics in the Department of Mathematical Sciences | +44 (0) 191 33 43111 |
Research interests
- String theory and the string/gauge theory correspondence
Publications
Conference Paper
- Schafer-Nameki (Hamburg U.), S., & Zamaklar, M. (2005, September). Stringy effects for spinning strings and the Bethe ansatz
- Zamaklar, M. (2004, September). Many faces of D-branes: From flat space, via AdS to PP-waves
- Peeters, K. (. P., & Zamaklar, M. (2004, December). Holographic dynamics of unstable branes in AdS
Journal Article
- Meessen, P., Peeters, K., & Zamaklar, M. (online). On Nonperturbative extensions of anti-de Sitter algebras. arXiv, https://doi.org/10.48550/arxiv.hep-th/0302198
- Chunlen, S., Peeters, K., & Zamaklar, M. (online). Finite-size effects for jet quenching. Journal of High Energy Physics,
- Arutyunov, G., Frolov, S., & Zamaklar, M. (online). Finite-size Effects from Giant Magnons. Journal of High Energy Physics,
- Peeters, K., Matuszewski, M., & Zamaklar, M. (2018). Holographic meson decays via worldsheet instantons. Journal of High Energy Physics, 2018(6), Article 83. https://doi.org/10.1007/jhep06%282018%29083
- Elliot-Ripley, M., Sutcliffe, P., & Zamaklar, M. (2016). Phases of kinky holographic nuclear matter. Journal of High Energy Physics, 2016(10), Article 088. https://doi.org/10.1007/jhep10%282016%29088
- Suphakorn, C., Peeters, K., Vanichchapongjaroen, P., & Zamaklar, M. (2014). Signals of a new phase in N=2 gauge theory with a magnetic field on the three-sphere. Journal of High Energy Physics, 2014(9), Article 58. https://doi.org/10.1007/jhep09%282014%29058
- Ballon Bayona, A., Peeters, K., & Zamaklar, M. (2012). A chiral magnetic spiral in the holographic Sakai-Sugimoto model. Journal of High Energy Physics, 2012(11), Article 164. https://doi.org/10.1007/jhep11%282012%29164
- Ballon Bayona, C., Peeters, K., & Zamaklar, M. (2011). A Non-homogeneous ground state of the low-temperature Sakai-Sugimoto model. Journal of High Energy Physics, 2011(6), Article 92. https://doi.org/10.1007/jhep06%282011%29092
- Peeters, K., Powell, J., & Zamaklar, M. (2009). Exploring colourful holographic superconductors. Journal of High Energy Physics, 2009(09), Article 101. https://doi.org/10.1088/1126-6708/2009/09/101
- Paredes, A., Peeters, K., & Zamaklar, M. (2009). Temperature versus acceleration: The Unruh effect for holographic models. Journal of High Energy Physics, 2009(04), Article 015. https://doi.org/10.1088/1126-6708/2009/04/015
- Paredes, A., Peeters, K., & Zamaklar, M. (2008). Mesons versus quasi-normal modes: Undercooling and overheating. Journal of High Energy Physics, 2008(05), Article 027. https://doi.org/10.1088/1126-6708/2008/05/027
- Aharony, O., Peeters, K., Sonnenschein, J., & Zamaklar, M. (2008). Rho meson condensation at finite isospin chemical potential in a holographic model for QCD. Journal of High Energy Physics, 2008(02), Article 071. https://doi.org/10.1088/1126-6708/2008/02/071
- Peeters, K., & Zamaklar, M. (2008). Dissociation by acceleration. Journal of High Energy Physics, 2008(01), Article 038. https://doi.org/10.1088/1126-6708/2008/01/038
- Peeters, K., & Zamaklar, M. (2007). The String/gauge theory correspondence in QCD. European Physical Journal - Special Topics, 152(1), 113-138. https://doi.org/10.1140/epjst/e2007-00379-0
- Arutyunov, G., Frolov, S., & Zamaklar, M. (2007). The Zamolodchikov-Faddeev algebra for AdS(5) x S**5 superstring. Journal of High Energy Physics, 2007(04), https://doi.org/10.1088/1126-6708/2007/04/002
- Arutyunov, G., Frolov, S., Plefka, J., & Zamaklar, M. (2007). The Off-shell Symmetry Algebra of the Light-cone AdS(5) x S**5 Superstring. Journal of Physics A: Mathematical and Theoretical, 40(13), https://doi.org/10.1088/1751-8113/40/13/018
- Peeters, K., Zamaklar, M., & Sonnenschein, J. (2006). Holographic melting and related properties of mesons in a quark-gluon plasma. Physical Review D, Particles and fields, 74(10), https://doi.org/10.1103/physrevd.74.106008
- Schafer-Nameki, S., Zamaklar, M., & Zarembo, K. (2006). How Accurate is the Quantum String Bethe Ansatz?. Journal of High Energy Physics, 0612,
- Frolov, S., Plefka, J., & Zamaklar, M. (2006). The AdS(5) x S**5 superstring in light-cone gauge and its Bethe equations. Journal of Physics A: Mathematical and General, 39(41), 13037-13082. https://doi.org/10.1088/0305-4470/39/41/s15
- Peeters, K., Sonnenschein, J., & Zamaklar, M. (2005). Holographic decays of large-spin mesons. Journal of High Energy Physics, 0602,
- Schafer-Nameki, S., & Zamaklar, M. (2005). Stringy sums and corrections to the quantum string Bethe ansatz. Journal of High Energy Physics, 10, https://doi.org/10.1088/1126-6708/2005/10/044
- Nicolai, H., Peeters, K., & Zamaklar, M. (2005). Loop quantum gravity: An Outside view. Classical and Quantum Gravity, 22(19), 193-247. https://doi.org/10.1088/0264-9381/22/19/r01
- Schäfer-Nameki, S., Zamaklar, M., & Zarembo, K. (2005). Quantum corrections to spinning strings in AdS(5) x S(5) and Bethe ansatz: A Comparative study. Journal of High Energy Physics, 2005(09), https://doi.org/10.1088/1126-6708/2005/09/051
- Arutyunov, G., & Zamaklar, M. (2005). Linking Backlund and monodromy charges for strings on AdS(5) x S**5. Journal of High Energy Physics, 0507, Article 026
- Peeters, K., Plefka, J., & Zamaklar, M. (2005). Splitting strings and chains. Fortschritte der Physik, 53, 640-646
- Sarkissian, G., & Zamaklar, M. (2004). Symmetry breaking, permutation D-branes on group manifolds: Boundary states and geometric description. Nuclear Physics B, 696, 66-106
- Peeters, K., & Zamaklar, M. (2004). Anti-de Sitter vacua require fermionic brane charges. Physical Review D, 69, Article 066009
- Peeters, K., Plefka, J., & Zamaklar, M. (2004). Splitting spinning strings in AdS/CFT. Journal of High Energy Physics, 0411,
- Peeters, K., & Zamaklar, M. (2004). AdS/CFT description of D-particle decay. Physical Review D, 71, Article 026007
- Sarkissian, G., & Zamaklar, M. (2003). Diagonal D-branes in product spaces and their Penrose limits. Journal of High Energy Physics, 0403, Article 005
- Bain, P., Peeters, K., & Zamaklar, M. (2003). D-branes in a plane wave from covariant open strings. Physical Review D, Particles and fields, 67(6), https://doi.org/10.1103/physrevd.67.066001
- Bain, P., Meessen, P., & Zamaklar, M. (2002). Supergravity solutions for D-branes in Hpp wave backgrounds. Classical and Quantum Gravity, 20, 913-934
- Peeters, K., & Zamaklar, M. (2001). Motion on moduli spaces with potentials. Journal of High Energy Physics, 0112,
- Townsend, P. K., & Zamaklar, M. (2001). The First law of black brane mechanics. Classical and Quantum Gravity, 18, 5269-5286
Working Paper