Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1452
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- Polylogarithms, algebraic K-theory, multiple zeta values
Publications
Chapter in book
- Gangl, H., Goncharov, A., & Levin, A. (2009). Multiple polylogarithms, polygons, trees and algebraic cycles. In D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, & M. Thaddeus (Eds.), Algebraic geometry--Seattle 2005. Part 2 (547-593). American Mathematical Society
- Gangl, H., Goncharov, A. B., & Levin, A. (2007). Multiple logarithms, algebraic cycles and trees. In P. Cartier, P. Moussa, B. Julia, & P. Vanhove (Eds.), Frontiers in Number Theory, Physics, and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization (759-774). Springer. https://doi.org/10.1007/978-3-540-30308-4_16
Conference Paper
Journal Article
- Gangl, H., Gunnells, P. E., Hanke, J., & Yasaki, D. (online). On the Cohomology of GL2 and SL2 over Imaginary Quadratic Fields. Experimental Mathematics, https://doi.org/10.1080/10586458.2024.2379797
- Charlton, S., Gangl, H., Radchenko, D., & Rudenko, D. (2024). On the Goncharov depth conjecture and polylogarithms of depth two. Selecta Mathematica (New Series), 30(2), Article 27. https://doi.org/10.1007/s00029-024-00918-6
- Charlton, S., Gangl, H., Lai, L., Xu, C., & Zhao, J. (2023). On two conjectures of Sun concerning Apéry-like series. Forum Mathematicum, 35(6), 1533-1547. https://doi.org/10.1515/forum-2022-0325
- Charlton, S., Gangl, H., & Radchenko, D. (2023). Functional equations of polygonal type for multiple polylogarithms in weights 5, 6 and 7. Pure and Applied Mathematics Quarterly, 19(1), 85-93. https://doi.org/10.4310/pamq.2023.v19.n1.a5
- Burns, D., de Jeu, R., Gangl, H., Rahm, A. D., & Yasaki, D. (2021). Hyperbolic tessellations and generators of K₃ for imaginary quadratic fields. Forum of Mathematics, Sigma, 9, Article e40. https://doi.org/10.1017/fms.2021.9
- Charlton, S., Gangl, H., & Radchenko, D. (2021). On functional equations for Nielsen polylogarithms. Communications in Number Theory and Physics, 15(2), 363-454. https://doi.org/10.4310/cntp.2021.v15.n2.a4
- Gangl, H., Dutour Sikiriˇc, M., Gunnells, P., Hanke, J., Schuermann, A., & Yasaki, D. (2019). On the topological computation of K_4 of the Gaussian and Eisenstein integers. Journal of Homotopy and Related Structures, 14, 281-291. https://doi.org/10.1007/s40062-018-0212-8
- Dutour Sikirić, M., Gangl, H., Gunnells, P. E., Hanke, J., Schürmann, A., & Yasaki, D. (2016). On the cohomology of linear groups over imaginary quadratic fields. Journal of Pure and Applied Algebra, 220(7), 2564-2589. https://doi.org/10.1016/j.jpaa.2015.12.002
- Elbaz-Vincent, P., Gangl, H., & Soule, C. (2013). Perfect forms, K-theory and the cohomology of modular groups. Advances in Mathematics, 245, 587-624. https://doi.org/10.1016/j.aim.2013.06.014
- Browkin, J., & Gangl, H. (2013). Tame kernels and second regulators of number fields and their subfields. K-Theory, 12(1), 137-165. https://doi.org/10.1017/is013005031jkt229
- Gangl, H. (2013). Functional equations and ladders for polylogarithms. Communications in Number Theory and Physics, 7(3), 397-410. https://doi.org/10.4310/cntp.2013.v7.n3.a1
- Duhr, C., Gangl, H., & Rhodes, J. (2012). From polygons and symbols to polylogarithmic expressions. Journal of High Energy Physics, 2012(10), Article 075. https://doi.org/10.1007/jhep10%282012%29075
- Burns, D., de Jeu, R., & Gangl, H. (2012). On special elements in higher algebraic K-theory and the Lichtenbaum-Gross Conjecture. Advances in Mathematics, 230(3), 1502-1529. https://doi.org/10.1016/j.aim.2012.03.014
- Belabas, K., & Gangl, H. (2004). Generators and Relations for K_2 O_F. K-Theory, 31(3), 195 - 231. https://doi.org/10.1023/b%3Akthe.0000028979.91416.00
- Gangl, H. (2003). Functional equations for higher logarithms. Selecta Mathematica (New Series), 9(3), 361 - 377. https://doi.org/10.1007/s00029-003-0312-z
- Elbaz-Vincent, P., & Gangl, H. (2002). On poly(ana)logs I. Compositio Mathematica, 130(2), 161-214. https://doi.org/10.1023/a%3A1013757217319
- Browkin, J., Belabas, K., & Gangl, H. (2000). Computing the tame kernel of quadratic imaginary fields. Mathematics of Computation, 69(232), 1667-1683. https://doi.org/10.1090/s0025-5718-00-01182-0
- Browkin, J., & Gangl, H. (1999). Tame and wild kernels of quadratic imaginary number fields. Mathematics of Computation, 68(225), 291-305. https://doi.org/10.1090/s0025-5718-99-01000-5
Supervision students
Qizhen Sang
1P
Rafail Psyroukis
3P
Xende Rivero Bowers
1P
Xintong Wang
2P