Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1941
Halim Kusumaatmaja
Honorary Visiting Professor
Affiliation | Telephone |
---|---|
Honorary Visiting Professor in the Department of Physics |
Biography
Research Interests
Our group is interested in theoretical and computational soft matter and biophysics. Our work is interdisciplinary, lying at the interface between Physics, Chemistry, Engineering and Biology. We are also part of the Durham Centre for Soft Matter, the Biophysical Sciences Institute, and the SOFI CDT. See here for more detailed descriptions.
We always welcome talented undergraduates, PhD students, Postdocs and visitors who want to work with us. Please contact Halim Kusumaatmaja by email if you are thinking of joining us.
Publications
Authored book
- The Lattice Boltzmann Method: Principles and PracticeKrüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. (2017). The Lattice Boltzmann Method: Principles and Practice. Springer Verlag. https://doi.org/10.1007/978-3-319-44649-3
Chapter in book
- Lattice Boltzmann Simulations of Wetting and Drop DynamicsKusumaatmaja, H., & Yeomans, J. (2010). Lattice Boltzmann Simulations of Wetting and Drop Dynamics. In A. Hoekstra, J. Kroc, & P. Sloot (Eds.), SIMULATING COMPLEX SYSTEMS BY CELLULAR AUTOMATA (pp. 241-274). SPRINGER-VERLAG BERLIN. https://doi.org/10.1007/978-3-642-12203-3%5C_11
Journal Article
- Integrating quantum algorithms into classical frameworks: a predictor–corrector approach using HHLRathore, O., Basden, A., Chancellor, N., & Kusumaatmaja, H. (2025). Integrating quantum algorithms into classical frameworks: a predictor–corrector approach using HHL. Quantum Science and Technology, 10(2), Article 025041. https://doi.org/10.1088/2058-9565/adbb14
- Load balancing for high performance computing using quantum annealingRathore, O., Basden, A., Chancellor, N., & Kusumaatmaja, H. (2025). Load balancing for high performance computing using quantum annealing. Physical Review Research, 7(1), Article 013067. https://doi.org/10.1103/PhysRevResearch.7.013067
- Nanoparticle adhesion at liquid interfacesSun, K., Gizaw, Y., Kusumaatmaja, H., & Voïtchovsky, K. (2025). Nanoparticle adhesion at liquid interfaces. Soft Matter, 21(4), 585-595. https://doi.org/10.1039/d4sm01101e
- Direct visualization of viscous dissipation and wetting ridge geometry on lubricant-infused surfacesNaga, A., Rennick, M., Hauer, L., Wong, W. S. Y., Sharifi-Aghili, A., Vollmer, D., & Kusumaatmaja, H. (2024). Direct visualization of viscous dissipation and wetting ridge geometry on lubricant-infused surfaces. Communications Physics, 7(1), Article 306. https://doi.org/10.1038/s42005-024-01795-3
- Finding Transition State and Minimum Energy Path of Bistable Elastic Continua through Energy Landscape ExplorationsWan, G., Avis, S. J., Wang, Z., Wang, X., Kusumaatmaja, H., & Zhang, T. (2024). Finding Transition State and Minimum Energy Path of Bistable Elastic Continua through Energy Landscape Explorations. Journal of the Mechanics and Physics of Solids, 183, Article 105503. https://doi.org/10.1016/j.jmps.2023.105503
- Droplet Self-Propulsion on Slippery Liquid-Infused Surfaces with Dual-Lubricant Wedge-Shaped Wettability PatternsPelizzari, M., McHale, G., Armstrong, S., Zhao, H., Ledesma-Aguilar, R., Wells, G. G., Kusumaatmaja, H., & Wells, G. G. (2023). Droplet Self-Propulsion on Slippery Liquid-Infused Surfaces with Dual-Lubricant Wedge-Shaped Wettability Patterns. Langmuir, 39(44), 15676-15689. https://doi.org/10.1021/acs.langmuir.3c02205
- Phase field simulation of liquid filling on grooved surfaces for complete, partial, and pseudo-partial wetting casesOktasendra, F., Jusufi, A., Konicek, A. R., Yeganeh, M. S., Panter, J. R., & Kusumaatmaja, H. (2023). Phase field simulation of liquid filling on grooved surfaces for complete, partial, and pseudo-partial wetting cases. The Journal of Chemical Physics, 158(20). https://doi.org/10.1063/5.0144886
- A bending rigidity parameter for stress granule condensatesLaw, J. O., Jones, C. M., Stevenson, T., Williamson, T. A., Turner, M. S., Kusumaatmaja, H., & Grellscheid, S. N. (2023). A bending rigidity parameter for stress granule condensates. Science Advances, 9(20). https://doi.org/10.1126/sciadv.adg0432
- Rough capillary risePanter, J. R., Konicek, A. R., King, M. A., Jusufi, A., Yeganeh, M. S., & Kusumaatmaja, H. (2023). Rough capillary rise. Communications Physics, 6, Article 44. https://doi.org/10.1038/s42005-023-01160-w
- Bubble Formation in MagmaGardner, J. E., Wadsworth, F. B., Carley, T. L., Llewellin, E. W., Kusumaatmaja, H., & Sahagian, D. (2023). Bubble Formation in Magma. Annual Review of Earth and Planetary Sciences, 51(1), 131-154. https://doi.org/10.1146/annurev-earth-031621-080308
- Modeling the dynamics of partially wetting droplets on fibersChristianto, R., Rahmawan, Y., Semprebon, C., & Kusumaatmaja, H. (2022). Modeling the dynamics of partially wetting droplets on fibers. Physical Review Fluids, 7(10), Article 103606. https://doi.org/10.1103/physrevfluids.7.103606
- A robust and memory-efficient transition state search method for complex energy landscapesAvis, S. J., Panter, J. R., & Kusumaatmaja, H. (2022). A robust and memory-efficient transition state search method for complex energy landscapes. The Journal of Chemical Physics, 157(12), Article 124107. https://doi.org/10.1063/5.0102145
- A minimal model of elastic instabilities in biological filament bundlesPanter, J., Kusumaatmaja, H., & Prior, C. (2022). A minimal model of elastic instabilities in biological filament bundles. Journal of the Royal Society, Interface, 19(194), Article 20220287. https://doi.org/10.1098/rsif.2022.0287
- Spontaneous phase separation of ternary fluid mixturesShek, A. C., & Kusumaatmaja, H. (2022). Spontaneous phase separation of ternary fluid mixtures. Soft Matter, 18(31), 5807-5814. https://doi.org/10.1039/d2sm00413e
- Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stabilityCalhoun, S. G., Brower, K. K., Suja, V. C., Kim, G., Wang, N., McCully, A. L., Kusumaatmaja, H., Fuller, G. G., & Fordyce, P. M. (2022). Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. Lab on a Chip, 22(12). https://doi.org/10.1039/d2lc00229a
- Three-dimensional printed liquid diodes with tunable velocity: Design guidelines and applications for liquid collection and transportSammartino, C., Rennick, M., Kusumaatmaja, H., & Pinchasik, B.-E. (2022). Three-dimensional printed liquid diodes with tunable velocity: Design guidelines and applications for liquid collection and transport. Physics of Fluids, 34(11). https://doi.org/10.1063/5.0122281
- Development of a setup to characterize capillary liquid bridges between liquid infused surfacesGoodband, S. J., Kusumaatmaja, H., & Voïtchovsky, K. (2022). Development of a setup to characterize capillary liquid bridges between liquid infused surfaces. AIP Advances, 12(1), Article 015120. https://doi.org/10.1063/5.0072548
- Tailoring the multistability of origami-inspired, buckled magnetic structures via compression and creasingLi, Y., Avis, S. J., Zhang, T., Kusumaatmaja, H., & Wang, X. (2021). Tailoring the multistability of origami-inspired, buckled magnetic structures via compression and creasing. Materials Horizons., 8(12), 3324-3333. https://doi.org/10.1039/d1mh01152a
- Apparent contact angle of drops on liquid infused surfaces: geometric interpretationSemprebon, C., Sadullah, M. S., McHale, G., & Kusumaatmaja, H. (2021). Apparent contact angle of drops on liquid infused surfaces: geometric interpretation. Soft Matter, 17(42), 9553-9559. https://doi.org/10.1039/d1sm00704a
- Intracellular wetting mediates contacts between liquid compartments and membrane-bound organellesKusumaatmaja, H., May, A. I., & Knorr, R. L. (2021). Intracellular wetting mediates contacts between liquid compartments and membrane-bound organelles. Journal of Cell Biology, 220(10), Article e202103175. https://doi.org/10.1083/jcb.202103175
- Reconfiguration of multistable 3D ferromagnetic mesostructures guided by energy landscape surveysLi, Y., Avis, S. J., Chen, J., Wu, G., Zhang, T., Kusumaatmaja, H., & Wang, X. (2021). Reconfiguration of multistable 3D ferromagnetic mesostructures guided by energy landscape surveys. Extreme Mechanics Letters, 48, Article 101428. https://doi.org/10.1016/j.eml.2021.101428
- Modeling ternary fluids in contact with elastic membranesPepona, M., Shek, A., Semprebon, C., Krüger, T., & Kusumaatmaja, H. (2021). Modeling ternary fluids in contact with elastic membranes. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 103(2), Article 022112. https://doi.org/10.1103/physreve.103.022112
- Control of Superselectivity by Crowding in Three-Dimensional HostsChristy, A. T., Kusumaatmaja, H., & Miller, M. A. (2021). Control of Superselectivity by Crowding in Three-Dimensional Hosts. Physical Review Letters, 126(2), Article 028002. https://doi.org/10.1103/physrevlett.126.028002
- Capillary Bridges on Liquid-Infused SurfacesShek, A. C., Semprebon, C., Panter, J. R., & Kusumaatmaja, H. (2021). Capillary Bridges on Liquid-Infused Surfaces. Langmuir, 37(2), 908-917. https://doi.org/10.1021/acs.langmuir.0c03220
- Predicting Hemiwicking Dynamics on Textured SubstratesNatarajan, B., Jaishankar, A., King, M., Oktasendra, F., Avis, S. J., Konicek, A. R., Wadsworth, G., Jusufi, A., Kusumaatmaja, H., & Yeganeh, M. S. (2021). Predicting Hemiwicking Dynamics on Textured Substrates. Langmuir, 37(1), 188-195. https://doi.org/10.1021/acs.langmuir.0c02737
- Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formationKusumaatmaja, H., May, A. I., Feeney, M., McKenna, J. F., Mizushima, N., Frigerio, L., & Knorr, R. L. (2021). Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation. Proceedings of the National Academy of Sciences, 118(36), Article e2024109118. https://doi.org/10.1073/pnas.2024109118
- OpenLB—Open source lattice Boltzmann codeKrause, M. J., Kummerländer, A., Avis, S. J., Kusumaatmaja, H., Dapelo, D., Klemens, F., Gaedtke, M., Hafen, N., Mink, A., Trunk, R., Marquardt, J. E., Maier, M.-L., Haussmann, M., & Simonis, S. (2021). OpenLB—Open source lattice Boltzmann code. Computers and Mathematics With Applications, 81, 258-288. https://doi.org/10.1016/j.camwa.2020.04.033
- Axisymmetric flows on the torus geometryBusuioc, S., Kusumaatmaja, H., & Ambruş, V. E. (2020). Axisymmetric flows on the torus geometry. Journal of Fluid Mechanics, 901, Article A9. https://doi.org/10.1017/jfm.2020.440
- Phase transitions on non-uniformly curved surfaces: Coupling between phase and locationLaw, J. O., Dean, J. M., Miller, M. A., & Kusumaatmaja, H. (2020). Phase transitions on non-uniformly curved surfaces: Coupling between phase and location. Soft Matter, 16(34), 8069-8077. https://doi.org/10.1039/d0sm00652a
- Self-propelled droplet transport on shaped-liquid surfacesLaunay, G., Sadullah, M. S., McHale, G., Ledesma-Aguilar, R., Kusumaatmaja, H., & Wells, G. G. (2020). Self-propelled droplet transport on shaped-liquid surfaces. Scientific Reports, 10(14987), Article 14987. https://doi.org/10.1038/s41598-020-70988-x
- Factors controlling the pinning force of liquid droplets on liquid infused surfacesSadullah, M. S., Panter, J. R., & Kusumaatmaja, H. (2020). Factors controlling the pinning force of liquid droplets on liquid infused surfaces. Soft Matter, 16(35), 8114-8121. https://doi.org/10.1039/d0sm00766h
- Modelling double emulsion formation in planar flow-focusing microchannelsWang, N., Semprebon, C., Liu, H., Zhang, C., & Kusumaatmaja, H. (2020). Modelling double emulsion formation in planar flow-focusing microchannels. Journal of Fluid Mechanics, 895, Article A22. https://doi.org/10.1017/jfm.2020.299
- Critical pressure asymmetry in the enclosed fluid diodePanter, J. R., Gizaw, Y., & Kusumaatmaja, H. (2020). Critical pressure asymmetry in the enclosed fluid diode. Langmuir, 36(26), 7463-7473. https://doi.org/10.1021/acs.langmuir.0c01039
- The Effect of Ageing on the Structure and Properties of Model Liquid Infused SurfacesGoodband, S., Armstrong, S., Kusumaatmaja, H., & Voïtchovsky, K. (2020). The Effect of Ageing on the Structure and Properties of Model Liquid Infused Surfaces. Langmuir, 36(13), 3461-3470. https://doi.org/10.1021/acs.langmuir.0c00059
- Self-assembly of small molecules at hydrophobic interfaces using group effectFoster, W., Miyazawa, K., Fukuma, T., Kusumaatmaja, H., & Voïtchovsky, K. (2020). Self-assembly of small molecules at hydrophobic interfaces using group effect. Nanoscale, 12(9), 5452-5463. https://doi.org/10.1039/c9nr09505e
- Bidirectional Motion of Droplets on Gradient Liquid Infused SurfacesSadullah, M. S., Launay, G., Parle, J., Ledesma-Aguilar, R., Gizaw, Y., McHale, G., Wells, G., & Kusumaatmaja, H. (2020). Bidirectional Motion of Droplets on Gradient Liquid Infused Surfaces. Communications Physics., 3, Article 166. https://doi.org/10.1038/s42005-020-00429-8
- Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentationVietri, M., Schultz, S. W., Bellanger, A., Jones, C. M., Petersen, L. I., Raiborg, C., Skarpen, E., Pedurupillay, C. R. J., Kjos, I., Kip, E., Timmer, R., Jain, A., Collas, P., Knorr, R. L., Grellscheid, S. N., Kusumaatmaja, H., Brech, A., Micci, F., Stenmark, H., & Campsteijn, C. (2020). Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nature Cell Biology, 22(7), 856-867. https://doi.org/10.1038/s41556-020-0537-5
- Harnessing energy landscape exploration to control the buckling of cylindrical shellsPanter, J., Chen, J., Zhang, T., & Kusumaatmaja, H. (2019). Harnessing energy landscape exploration to control the buckling of cylindrical shells. Communications Physics., 2, Article 151. https://doi.org/10.1038/s42005-019-0251-4
- Learning dynamical information from static protein and sequencing dataPearce, P., Woodhouse, F., Forrow, A., Kelly, A., Kusumaatmaja, H., & Dunkel, J. (2019). Learning dynamical information from static protein and sequencing data. Nature Communications, 10, Article 5368. https://doi.org/10.1038/s41467-019-13307-x
- Morphological analysis of chiral rod clusters from a coarse-grained single-site chiral potentialSutherland, B., Olesen, S., Kusumaatmaja, H., Morgan, J., & Wales, D. (2019). Morphological analysis of chiral rod clusters from a coarse-grained single-site chiral potential. Soft Matter, 15(40), 8147-8155. https://doi.org/10.1039/c9sm01343a
- Wetting boundaries for a ternary high-density-ratio lattice Boltzmann methodBala, N., Pepona, M., Karlin, I., Kusumaatmaja, H., & Semprebon, C. (2019). Wetting boundaries for a ternary high-density-ratio lattice Boltzmann method. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 100(1), Article 013308. https://doi.org/10.1103/physreve.100.013308
- Multifaceted design optimization for superomniphobic surfacesPanter, J., Gizaw, Y., & Kusumaatmaja, H. (2019). Multifaceted design optimization for superomniphobic surfaces. Science Advances, 5(6), Article eaav7328. https://doi.org/10.1126/sciadv.aav7328
- Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approachAmbrus, V., Busuioc, S., Wagner, A., Paillusson, F., & Kusumaatmaja, H. (2019). Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 100. https://doi.org/10.1103/physreve.100.063306
- Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayersBarlow, N. E., Kusumaatmaja, H., Salehi-Reyhani, A., Brooks, N., Barter, L. M., Flemming, A. J., & Ces, O. (2018). Measuring bilayer surface energy and curvature in asymmetric droplet interface bilayers. Journal of the Royal Society, Interface, 15(148), Article 20180610. https://doi.org/10.1098/rsif.2018.0610
- Drop Dynamics on Liquid Infused Surfaces: The Role of the Lubricant RidgeSadullah, M., Semprebon, C., & Kusumaatmaja, H. (2018). Drop Dynamics on Liquid Infused Surfaces: The Role of the Lubricant Ridge. Langmuir, 34(27), 8112-8118. https://doi.org/10.1021/acs.langmuir.8b01660
- Nucleation on a sphere: the roles of curvature, confinement and ensembleLaw, J. O., Wong, A. G., Kusumaatmaja, H., & Miller, M. A. (2018). Nucleation on a sphere: the roles of curvature, confinement and ensemble. Molecular Physics, 116(21-22), 3008-3019. https://doi.org/10.1080/00268976.2018.1483041
- Ternary free-energy entropic lattice Boltzmann model with a high density ratioWöhrwag, M., Semprebon, C., Mazloomi Moqaddam, A., Karlin, I., & Kusumaatmaja, H. (2018). Ternary free-energy entropic lattice Boltzmann model with a high density ratio. Physical Review Letters, 120(23), Article 234501. https://doi.org/10.1103/physrevlett.120.234501
- Dynamic morphologies and stability of droplet interface bilayersGuiselin, B., Law, J., Chakrabarti, B., & Kusumaatmaja, H. (2018). Dynamic morphologies and stability of droplet interface bilayers. Physical Review Letters, 120(23), Article 238001. https://doi.org/10.1103/physrevlett.120.238001
- On The Critical Casimir Interaction Between Anisotropic Inclusions On A MembraneBenet, J., Paillusson, F., & Kusumaatmaja, H. (2017). On The Critical Casimir Interaction Between Anisotropic Inclusions On A Membrane. Physical Chemistry Chemical Physics, 19(35), 24188-24196. https://doi.org/10.1039/c7cp03874g
- Edge Fracture in Complex FluidsHemingway, E. J., Kusumaatmaja, H., & Fielding, S. M. (2017). Edge Fracture in Complex Fluids. Physical Review Letters, 119(2), Article 028006. https://doi.org/10.1103/physrevlett.119.028006
- The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structuresPanter, J., & Kusumaatmaja, H. (2017). The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures. Journal of Physics: Condensed Matter, 29(8), Article 084001. https://doi.org/10.1088/1361-648x/aa5380
- Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused SurfacesSemprebon, C., McHale, G., & Kusumaatmaja, H. (2017). Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces. Soft Matter, 13(1), 101-110. https://doi.org/10.1039/c6sm00920d
- Phase Separation on Bicontinuous Cubic Membranes: Symmetry Breaking, Reentrant, and Domain FacetingPaillusson, F., Pennington, M., & Kusumaatmaja, H. (2016). Phase Separation on Bicontinuous Cubic Membranes: Symmetry Breaking, Reentrant, and Domain Faceting. Physical Review Letters, 117(5), Article 058101. https://doi.org/10.1103/physrevlett.117.058101
- Network of Minima of the Thomson Problem and Smale's 7th ProblemMehta, D., Chen, J., Chen, D., Kusumaatmaja, H., & Wales, D. (2016). Network of Minima of the Thomson Problem and Smale’s 7th Problem. Physical Review Letters, 117(2), Article 028301. https://doi.org/10.1103/physrevlett.117.028301
- Energetically favoured defects in dense packings of particles on spherical surfacesPaquay, S., Kusumaatmaja, H., Wales, D., Zandi, R., & van der Schoot, P. (2016). Energetically favoured defects in dense packings of particles on spherical surfaces. Soft Matter, 12(26), 5708-5717. https://doi.org/10.1039/c6sm00489j
- Ternary Free Energy Lattice Boltzmann Model with Tunable Surface Tensions and Contact AnglesSemprebon, C., Krüger, T., & Kusumaatmaja, H. (2016). Ternary Free Energy Lattice Boltzmann Model with Tunable Surface Tensions and Contact Angles. Physical Review . E, Statistical, Nonlinear, and Soft Matter Physics, 93(3), Article 033305. https://doi.org/10.1103/physreve.93.033305
- Moving contact line dynamics: from diffuse to sharp interfacesKusumaatmaja, H., Hemingway, E., & Fielding, S. (2016). Moving contact line dynamics: from diffuse to sharp interfaces. Journal of Fluid Mechanics, 788, 209-227. https://doi.org/10.1017/jfm.2015.697
- Free energy pathways of a Multistable Liquid Crystal DeviceKusumaatmaja, H., & Majumdar, A. (2015). Free energy pathways of a Multistable Liquid Crystal Device. Soft Matter, 11(24), 4809-4817. https://doi.org/10.1039/c5sm00578g
- Surveying the free energy landscapes of continuum models: Application to soft matter systemsKusumaatmaja, H. (2015). Surveying the free energy landscapes of continuum models: Application to soft matter systems. Journal of Chemical Physics, 142(12). https://doi.org/10.1063/1.4916389
- Design principles for Bernal spirals and helices with tunable pitchFejer, S., Chakrabarti, D., Kusumaatmaja, H., & Wales, D. (2014). Design principles for Bernal spirals and helices with tunable pitch. Nanoscale, 6(16), 9448-9456. https://doi.org/10.1039/c4nr00324a
- Exploring energy landscapes: from molecular to mesoscopic systemsChakrabarti, D., Kusumaatmaja, H., Rühle, V., & Wales, D. (2014). Exploring energy landscapes: from molecular to mesoscopic systems. Physical Chemistry Chemical Physics, 16(11), 5014-5025. https://doi.org/10.1039/c3cp52603h
- A conformational factorisation approach for estimating the binding free energies of macromoleculesMochizuki, K., Whittleston, C., Somani, S., Kusumaatmaja, H., & Wales, D. (2014). A conformational factorisation approach for estimating the binding free energies of macromolecules. Physical Chemistry Chemical Physics, 16(7), 2842-2853. https://doi.org/10.1039/c3cp53537a
- Exploring energy landscapes: metrics, pathways, and normal mode analysis for rigid-body moleculesRühle, V., Kusumaatmaja, H., Chakrabarti, D., & Wales, D. (2013). Exploring energy landscapes: metrics, pathways, and normal mode analysis for rigid-body molecules. Journal of Chemical Theory and Computation, 9(9), 4026-4034. https://doi.org/10.1021/ct400403y
- Defect motifs for constant mean curvature surfacesKusumaatmaja, H., & Wales, D. (2013). Defect motifs for constant mean curvature surfaces. Physical Review Letters, 110(16), Article 165502. https://doi.org/10.1103/physrevlett.110.165502
- Anisotropic wetting and de-wetting of drops on substrates patterned with polygonal postsVrancken, R., Blow, M., Kusumaatmaja, H., Hermans, K., Prenen, A., Bastiaansen, C., Broer, D., & Yeomans, J. (2013). Anisotropic wetting and de-wetting of drops on substrates patterned with polygonal posts. Soft Matter, 9(3), 674-683. https://doi.org/10.1039/c2sm26393a
- A Local Rigid Body Framework for Global Optimization of BiomoleculesKusumaatmaja, H., Whittleston, C., & Wales, D. (2012). A Local Rigid Body Framework for Global Optimization of Biomolecules. Journal of Chemical Theory and Computation, 8(12), 5159-5165. https://doi.org/10.1021/ct3004589
- Wetting-Induced Budding of Vesicles in Contact with Several Aqueous PhasesLi, Y., Kusumaatmaja, H., Lipowsky, R., & Dimova, R. (2012). Wetting-Induced Budding of Vesicles in Contact with Several Aqueous Phases. Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 116(6), 1819-1823. https://doi.org/10.1021/jp211850t
- Nonisomorphic nucleation pathways arising from morphological transitions of liquid channels.Kusumaatmaja, H., Lipowsky, R., Jin, C., Mutihac, R.-C., & Riegler, H. (2012). Nonisomorphic nucleation pathways arising from morphological transitions of liquid channels. Physical Review Letters, 108(12), Article 126102. https://doi.org/10.1103/physrevlett.108.126102
- Droplet-induced budding transitions of membranesKusumaatmaja, H., & Lipowsky, R. (2011). Droplet-induced budding transitions of membranes. Soft Matter, 7(15), 6914-6919. https://doi.org/10.1039/c1sm05499f
- Drop dynamics on hydrophobic and superhydrophobic surfacesMognetti, B., Kusumaatmaja, H., & Yeomans, J. (2010). Drop dynamics on hydrophobic and superhydrophobic surfaces. Faraday Discussions, 146, 153-165. https://doi.org/10.1039/b926373j
- Fully Reversible Transition from Wenzel to Cassie-Baxter States on Corrugated Superhydrophobic SurfacesVrancken, R., Kusumaatmaja, H., Hermans, K., Prenen, A., Pierre-Louis, O., Bastiaansen, C., & Broer, D. (2010). Fully Reversible Transition from Wenzel to Cassie-Baxter States on Corrugated Superhydrophobic Surfaces. Langmuir, 26(5), 3335-3341. https://doi.org/10.1021/la903091s
- Equilibrium Morphologies and Effective Spring Constants of Capillary BridgesKusumaatmaja, H., & Lipowsky, R. (2010). Equilibrium Morphologies and Effective Spring Constants of Capillary Bridges. Langmuir, 26(24), 18734-18741. https://doi.org/10.1021/la102206d
- Intrinsic contact angle of aqueous phases at membranes and vesiclesKusumaatmaja, H., Li, Y., Dimova, R., & Lipowsky, R. (2009). Intrinsic contact angle of aqueous phases at membranes and vesicles. Physical Review Letters, 103(23), Article 238103. https://doi.org/10.1103/physrevlett.103.238103
- Modelling capillary filling dynamics using lattice Boltzmann simulationsPooley, C., Kusumaatmaja, H., & Yeomans, J. (2009). Modelling capillary filling dynamics using lattice Boltzmann simulations. European Physical Journal - Special Topics, 171, 63-71. https://doi.org/10.1140/epjst/e2009-01012-0
- Imbibition through an array of triangular postsBlow, M., Kusumaatmaja, H., & Yeomans, J. (2009). Imbibition through an array of triangular posts. Journal of Physics: Condensed Matter, 21(46), Article 464125. https://doi.org/10.1088/0953-8984/21/46/464125
- Anisotropic hysteresis on ratcheted superhydrophobic surfacesKusumaatmaja, H., & Yeomans, J. (2009). Anisotropic hysteresis on ratcheted superhydrophobic surfaces. Soft Matter, 5(14), 2704-2707. https://doi.org/10.1039/b904807c
- Modeling the Corrugation of the Three-Phase Contact Line Perpendicular to a Chemically Striped SubstrateMontes Ruiz-Cabello, F., Kusumaatmaja, H., Rodriguez-Valverde, M., Yeomans, J., & Cabrerizo-Vilchez, M. (2009). Modeling the Corrugation of the Three-Phase Contact Line Perpendicular to a Chemically Striped Substrate. Langmuir, 25(14), 8357-8361. https://doi.org/10.1021/la900579s
- Contact line dynamics in binary lattice Boltzmann simulationsPooley, C., Kusumaatmaja, H., & Yeomans, J. (2008). Contact line dynamics in binary lattice Boltzmann simulations. Physical Review E, 78(5, 2), Article 056709. https://doi.org/10.1103/physreve.78.056709
- Capillary filling in patterned channelsKusumaatmaja, H., Pooley, C., Girardo, S., Pisignano, D., & Yeomans, J. (2008). Capillary filling in patterned channels. Physical Review E, 77(6, 2), Article 067301. https://doi.org/10.1103/physreve.77.067301
- Anisotropic drop morphologies on corrugated surfacesKusumaatmaja, H., Vrancken, R., Bastiaansen, C., & Yeomans, J. (2008). Anisotropic drop morphologies on corrugated surfaces. Langmuir, 24(14), 7299-7308. https://doi.org/10.1021/la800649a
- The collapse transition on superhydrophobic surfaces.Kusumaatmaja, H., Blow, M., Dupuis, A., & Yeomans, J. (2008). The collapse transition on superhydrophobic surfaces. Europhysics Letters, 81(3), Article 36003. https://doi.org/10.1209/0295-5075/81/36003
- Modelling drop dynamics on patterned surfacesYeomans, J., & Kusumaatmaja, H. (2007). Modelling drop dynamics on patterned surfaces. Bulletin of the Polish Academy of Sciences Technical Sciences, 55(2), 203-210.
- Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfacesKusumaatmaja, H., & Yeomans, J. (2007). Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir, 23(11), 6019-6032. https://doi.org/10.1021/la063218t
- Controlling drop size and polydispersity using chemically patterned surfacesKusumaatmaja, H., & Yeomans, J. (2007). Controlling drop size and polydispersity using chemically patterned surfaces. Langmuir, 23(2), 956-959. https://doi.org/10.1021/la062082w
- Drop dynamics on chemically patterned surfacesKusumaatmaja, H., Leopoldes, J., Dupuis, A., & Yeomans, J. (2006). Drop dynamics on chemically patterned surfaces. Europhysics Letters, 73(5), 740-746. https://doi.org/10.1209/epl/i2005-10452-0
- Lattice Boltzmann simulations of drop dynamicsKusumaatmaja, H., Dupuis, A., & Yeomans, J. (2006). Lattice Boltzmann simulations of drop dynamics. Mathematics and Computers in Simulation, 72(2-6), 160-164. https://doi.org/10.1016/j.matcom.2006.05.016
Supervision students
Amal Alamri
PGR Student
Ke Sun
PGR Student
Listra Ginting
PGR Student
Sam Walker
PGR Student
Xiaotian Ma
PGR Student