Staff profile
Dr Frederick Li
Associate Professor
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Computer Science | +44 (0) 191 33 44299 |
Biography
Frederick Li received both a Bachelor of Arts (Honors) in Computing Studies and a Master of Philosophy from The Hong Kong Polytechnic University, and a Ph.D. degree in Computer Graphics from City University of Hong Kong. He is currently an Associate Professor at University of Durham. Prior to the current appointment, he was an Assistant Professor at The Hong Kong Polytechnic University from 2003 to 2006, and had been the project manger of a Hong Kong Government Innovation and Technology Fund (ITF) funded project.
Frederick Li is currently an Associate Editor of Frontiers in Education (Digital Education) and an Editorial Board Member of Virtual Reality & Intelligent Hardware. He has served as an Associate Editor of International Journal of Distance Education Technologies and a Guest Editor of three of its special issues. He has also served as a Conference Co-chair of ICWL 2022, Program Co-chair of ISVC 2021, ICWL 2015/2013/2008/2007 and IDET 2008-2009. In addition, he has served as a a Poster & Demo Track Co-Chair of EDM 2022, a Workshop Co-chair of ICWL 2009 and U-Media 2009, a Publicity Co-Chair of ACM MTDL 2010 and U-Media 2010, and a Local Co-Chair of BMVC 2018.
Departmental Duties: In the department, he has served as Chair of Board of Examiners of both UG and PGT Programmes, PGT Programme Director, and Chair of Taught Postgraduate Management Committee (CS and Engineering).
External Appointment: External Examiner for a taught MSc programme in Northumbria University (2022-2026)
Research Projects
Mesh Saliency | |
| ![]() |
Graphics Modeling and Transmission | |
| ![]() |
Remote Rendering and Perceptual Quality Assessment | |
| ![]() |
Cloud Modeling | |
| ![]() |
Coloring and Beautification | |
| ![]() |
Student Performance Analytics | |
| ![]() |
Educational Technologies | |
| ![]() |
Papers published from supervised undergraduate projects | |
|
Research interests
- Collaborative Virtual Environment
- Computer Graphics
- Educational Technologies
- Graphics Modeling and Transmission
- Augmented and Virtual Reality
- Machine Learning and Deep Learning
Esteem Indicators
- 2000: Journal Editorialships: Associate Editor of Frontiers in Education (Digital Education) and an Editorial Board Member of Virtual Reality & Intelligent Hardware.
- 2000: Conference Organization: Conference Co-chair of ICWL 2022, Program Co-chair of ISVC 2021, ICWL 2015/2013/2008/2007 and IDET 2008-2009. In addition, he has served as a a Poster & Demo Track Co-Chair of EDM 2022, a Workshop Co-chair of ICWL 2009 and U-Media 2009, a Publicity Co-Chair of ACM MTDL 2010 and U-Media 2010, and a Local Co-Chair of BMVC 2018.
Publications
Chapter in book
- ST-SACLF: Style Transfer Informed Self-Attention Classifier for Bias-Aware Painting ClassificationVijendran, M., Li, F. W. B., Deng, J., & Shum, H. P. H. (in press). ST-SACLF: Style Transfer Informed Self-Attention Classifier for Bias-Aware Painting Classification. In CCIS ’24: Communications in Computer and Information Science. Springer.
- Learning Path Construction Based on Association Link NetworkYang, F., Li, F. W., & Lau, R. W. (2012). Learning Path Construction Based on Association Link Network. In E. Popescu, Q. Li, R. Klamma, H. Leung, & M. Specht (Eds.), Advances in web-based learning (ICWL 2012) : proceedings of 11th International Conference, Sinaia, Romania, September 2-4, 2012. (pp. 120-131). Springer Verlag. https://doi.org/10.1007/978-3-642-33642-3_13
Conference Paper
- Uncertainty-aware Probabilistic 3D Human Motion Forecasting via Invertible NetworksMa, Y., Zhou, K., Yu, F., Li, F. W. B., & Liang, X. (2025, May 19 – 2025, May 23). Uncertainty-aware Probabilistic 3D Human Motion Forecasting via Invertible Networks [Conference paper]. Presented at IEEE International Conference on Robotics and Automation 2025, Atlanta, USA. IEEE.
- Multi-modal Dynamic Point Cloud Geometric Compression Based on Bidirectional Recurrent Scene Flow*Nan, F., Li, F., Wang, Z., Tam, G. K. L., Jiang, Z., DongZheng, D., & Yang, B. (2025). Multi-modal Dynamic Point Cloud Geometric Compression Based on Bidirectional Recurrent Scene Flow*. In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE. https://doi.org/10.1109/icassp49660.2025.10888353
- From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in VideosQiao, T., Li, R., Li, F. W. B., & Shum, H. P. H. (2025). From Category to Scenery: An End-to-End Framework for Multi-Person Human-Object Interaction Recognition in Videos. In Pattern Recognition 27th International Conference, ICPR 2024, Kolkata, India, December 1–5, 2024, Proceedings, Part XV (pp. 262-277). Springer. https://doi.org/10.1007/978-3-031-78354-8_17
- MAGR: Manifold-Aligned Graph Regularization for Continual Action Quality AssessmentZhou, K., Wang, L., Zhang, X., Shum, H. P., Li, F. W. B., Li, J., & Liang, X. (2025). MAGR: Manifold-Aligned Graph Regularization for Continual Action Quality Assessment. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G. Varol (Eds.), Computer Vision – ECCV 2024 (pp. 375-392). Springer. https://doi.org/10.1007/978-3-031-73247-8_22
- Reducing University Students’ Exam Anxiety via Mindfulness-Based Cognitive Therapy in VR with Real-Time EEG NeurofeedbackPan, Z., Cristea, A. I., & Li, F. W. B. (2024). Reducing University Students’ Exam Anxiety via Mindfulness-Based Cognitive Therapy in VR with Real-Time EEG Neurofeedback. In Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky (pp. 418-423). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64312-5_52
- HSE: Hybrid Species Embedding for Deep Metric LearningYang, B., Sun, H., Li, F. W. B., Chen, Z., Cai, J., & Song, C. (2024). HSE: Hybrid Species Embedding for Deep Metric Learning. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. https://doi.org/10.1109/ICCV51070.2023.01014
- DrawGAN: Multi-view Generative Model Inspired By The Artist's Drawing MethodYang, B., Chen, Z., Li, F. W. B., Sun, H., & Cai, J. (2023). DrawGAN: Multi-view Generative Model Inspired By The Artist’s Drawing Method. In B. Sheng, L. Bi, J. Kim, N. Magnenat-Thalmann, & D. Thalmann (Eds.), Advances in Computer Graphics 40th Computer Graphics International Conference, CGI 2023, Shanghai, China, August 28–September 1, 2023, Proceedings, Part II (pp. 479-490). Springer. https://doi.org/10.1007/978-3-031-50072-5_38
- A Mixed Reality Training System for Hand-Object Interaction in Simulated Microgravity EnvironmentsZhou, K., Chen, C., Ma, Y., Leng, Z., Shum, H. P., Li, F. W., & Liang, X. (2023). A Mixed Reality Training System for Hand-Object Interaction in Simulated Microgravity Environments. In 2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE. https://doi.org/10.1109/ISMAR59233.2023.00031
- Tackling Data Bias in Painting Classification with Style TransferVijendran, M., Li, F. W., & Shum, H. P. (2023). Tackling Data Bias in Painting Classification with Style Transfer. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5 VISAPP: VISAPP (pp. 250-261). SciTePress. https://doi.org/10.5220/0011776600003417
- Fg-T2M: Fine-Grained Text-Driven Human Motion Generation via Diffusion ModelWang, Y., Leng, Z., Li, F. W. B., Wu, S.-C., & Liang, X. (2023). Fg-T2M: Fine-Grained Text-Driven Human Motion Generation via Diffusion Model. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. https://doi.org/10.1109/ICCV51070.2023.02014
- STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction Recognition in VideosAlmushyti, M., & Li, F. W. (2022, November). STIT: Spatio-Temporal Interaction Transformers for Human-Object Interaction Recognition in Videos. Presented at 2022 26th International Conference on Pattern Recognition (ICPR), Montréal, Québec. https://doi.org/10.1109/icpr56361.2022.9956030
- Aesthetic Enhancement via Color Area and Location AwarenessYang, B., Wang, Q., Li, F. W., Liang, X., Wei, T., & Zhu, C. (2022). Aesthetic Enhancement via Color Area and Location Awareness (Y. Yang, A. D. Parakkat, B. Deng, & S. T. Noh, Eds.). Eurographics Association. https://doi.org/10.2312/pg.20221247
- Gamifying Experiential Learning TheoryAlsaqqaf, A., & Li, F. W. (2022). Gamifying Experiential Learning Theory. In ICWL 2022, SETE 2022: Learning Technologies and Systems (pp. 16-28). Springer. https://doi.org/10.1007/978-3-031-33023-0_2
- Geometric Features Informed Multi-person Human-object Interaction Recognition in VideosQiao, T., Men, Q., Li, F. W., Kubotani, Y., Morishima, S., & Shum, H. P. (2022). Geometric Features Informed Multi-person Human-object Interaction Recognition in Videos. In Lecture Notes in Computer Science (pp. 474-491). Springer Verlag. https://doi.org/10.1007/978-3-031-19772-7_28
- STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion DenoisingZhou, K., Cheng, Z., Shum, H. P., Li, F. W., & Liang, X. (2021). STGAE: Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising. Presented at 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy. https://doi.org/10.1109/ismar52148.2021.00018
- Recognising Human-Object Interactions Using Attention-based LSTMsAlmushyti, M., & Li, F. W. (2019). Recognising Human-Object Interactions Using Attention-based LSTMs. In F. P. Vidal, G. K. . L. Tam, & J. C. Roberts (Eds.), Computer Graphics and Visual Computing (CGVC). (pp. 135-139). Eurographics Association. https://doi.org/10.2312/cgvc.20191269
- Deep Blind Synthesized Image Quality Assessment with Contextual Multi-Level Feature PoolingWang, X., Wang, K., Yang, B., Li, F. W., & Liang, X. (2019). Deep Blind Synthesized Image Quality Assessment with Contextual Multi-Level Feature Pooling. In 2019 IEEE International Conference on Image Processing Proceedings. (pp. 435-439). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/icip.2019.8802943
- Image recoloring for home sceneLin, X., Wang, X., Li, F. W., Yang, B., Zhang, K., & Wei, T. (2018). Image recoloring for home scene. In VRCAI ’18 Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry.. ACM. https://doi.org/10.1145/3284398.3284404
- Modeling Detailed Cloud Scene from Multi-source ImagesCen, Y., Liang, X., Chen, J., Yang, B., & Li, F. W. (2018). Modeling Detailed Cloud Scene from Multi-source Images. In H. Fu, A. Ghosh, & J. Kopf (Eds.), Pacific graphics short papers, (pp. 49-52). Eurographics Association. https://doi.org/10.2312/pg.20181278
- Failure rates in introductory programming revisitedWatson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Åsa Cajander, M. Daniels, T. Clear, & A. Pears (Eds.), Proceedings of the 2014 conference on Innovation & technology in computer science education (ITiCSE ’14). (pp. 39-44). Association for Computing Machinery (ACM). https://doi.org/10.1145/2591708.2591749
- No Tests Required: Comparing Traditional and Dynamic Predictors of Programming SuccessWatson, C., Li, F. W., & Godwin, J. L. (2014). No Tests Required: Comparing Traditional and Dynamic Predictors of Programming Success. In J. . D. Dougherty, K. Nagel, A. Decker, & K. Eiselt (Eds.), Proceedings of the 45th ACM Technical Symposium on Computer Science Education. (pp. 469-474). Association for Computing Machinery (ACM). https://doi.org/10.1145/2538862.2538930
- Predicting Performance in an Introductory Programming Course by Logging and Analyzing Student Programming BehaviorWatson, C., Li, F. W., & Godwin, J. L. (2013). Predicting Performance in an Introductory Programming Course by Logging and Analyzing Student Programming Behavior. In Proceedings of the 2013 IEEE 13th International Conference on Advanced Learning Technologies (ICALT 2013). (pp. 319-323). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/icalt.2013.99
- BlueFix: Using Crowd-sourced Feedback to Support Programming Students in Error Diagnosis and RepairWatson, C., Li, F. W., & Godwin, J. L. (2012). BlueFix: Using Crowd-sourced Feedback to Support Programming Students in Error Diagnosis and Repair. In E. Popescu, Q. Li, R. Klamma, H. Leung, & M. Specht (Eds.), Advances in Web-Based Learning - ICWL 2012: 11th International Conference, Sinaia, Romania, September 2-4, 2012 ; proceedings (pp. 228-239). Springer Verlag. https://doi.org/10.1007/978-3-642-33642-3_25
- Sketching-Based Skeleton GenerationZheng, Q., Li, F. L., & Lau, R. (2010). Sketching-Based Skeleton Generation. In 2010 3rd IEEE International Conference on Ubi-Media Computing (U-Media 2010), 5-6 July 2010, Jinhua, China. (pp. 179-186). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/umedia.2010.5544472
- Active Contour Projection for Mesh SegmentationYang, F., Li, F., & Lau, R. (2009). Active Contour Projection for Mesh Segmentation. In Joint Conferences on Pervasive Computing (JCPC), 2009 ; Tamsui, Taipei, Taiwan, 3 - 5 Dec. 2009 ; [including two conferences and three workshops] (pp. 865-874). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/jcpc.2009.5420066
- GameOD: An Internet Based Game-On-Demand FrameworkLi, F., Lau, R., & Kilis, D. (2004). GameOD: An Internet Based Game-On-Demand Framework (R. Lau & G. Baciu, Eds.). Association for Computing Machinery (ACM). https://doi.org/10.1145/1077534.1077559
- Supporting Continuous Consistency in Multiplayer Online GamesLi, F., Li, L., & Lau, R. (2004, October). Supporting Continuous Consistency in Multiplayer Online Games. Presented at 12th Annual ACM International Conference on Multimedia, New York, USA. https://doi.org/10.1145/1027527.1027619
Edited book
- Advances in Web-Based Learning - ICWL 2015Li, F. W., Klamma, R., Laanpere, M., Zhang, J., Manjón, B., & Lau, R. W. (Eds.). (n.d.). Advances in Web-Based Learning - ICWL 2015 [Contracted by publisher] (9412th ed.). Springer Verlag.
Journal Article
- Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in VideosQiao, T., Li, R., Li, F. W. B., Kubotani, Y., Morishima, S., & Shum, H. P. H. (in press). Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos. Expert Systems With Applications.
- WDFSR: Normalizing Flow based on Wavelet-Domain for Super-ResolutionSong, C., Li, S., Li, F. W. B., & Yang, B. (in press). WDFSR: Normalizing Flow based on Wavelet-Domain for Super-Resolution. Computational Visual Media.
- CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style TransferPan, J., Li, F. W. B., Yang, B., & Nan, F. (in press). CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer. Computer Animation and Virtual Worlds.
- PHI: Bridging Domain Shift in Long-Term Action Quality Assessment via Progressive Hierarchical InstructionZhou, K., Shum, H. P. H., Li, F. W. B., Zhang, X., & Liang, X. (in press). PHI: Bridging Domain Shift in Long-Term Action Quality Assessment via Progressive Hierarchical Instruction. IEEE Transactions on Image Processing.
- Talking Face Generation with Lip and Identity PriorsWu, J., Li, F. W. B., Tam, G. K. L., Yang, B., Nan, F., & Pan, J. (2025). Talking Face Generation with Lip and Identity Priors. Computer Animation and Virtual Worlds, 36(3), Article e70026. https://doi.org/10.1002/cav.70026
- 3D data augmentation and dual-branch model for robust face forgery detectionZhou, C., Li, F. W., Song, C., Zheng, D., & Yang, B. (2025). 3D data augmentation and dual-branch model for robust face forgery detection. Graphical Models, 138, Article 101255. https://doi.org/10.1016/j.gmod.2025.101255
- Fg-T2M++: LLMs-Augmented Fine-Grained Text Driven Human Motion GenerationWang, Y., Li, M., Liu, J., Leng, Z., Li, F. W. B., Zhang, Z., & Liang, X. (2025). Fg-T2M++: LLMs-Augmented Fine-Grained Text Driven Human Motion Generation. International Journal of Computer Vision. Advance online publication. https://doi.org/10.1007/s11263-025-02392-9
- Laplacian Projection Based Global Physical Prior Smoke ReconstructionXiao, S., Tong, C., Zhang, Q., Cen, Y., Li, F. W. B., & Liang, X. (2024). Laplacian Projection Based Global Physical Prior Smoke Reconstruction. IEEE Transactions on Visualization and Computer Graphics, 30(12), 7657-7671. https://doi.org/10.1109/tvcg.2024.3358636
- Multi-Task Spatial-Temporal Graph Auto-Encoder for Hand Motion DenoisingZhou, K., Shum, H. P., Li, F. W., & Liang, X. (2024). Multi-Task Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising. IEEE Transactions on Visualization and Computer Graphics, 30(10), 6754-6769. https://doi.org/10.1109/TVCG.2023.3337868
- Color Theme Evaluation through User Preference ModelingYang, B., Wei, T., Li, F. W. B., Liang, X., Deng, Z., & Fang, Y. (2024). Color Theme Evaluation through User Preference Modeling. ACM Transactions on Applied Perception, 21(3), Article 12. https://doi.org/10.1145/3665329
- Multi-Feature Fusion Enhanced Monocular Depth Estimation With Boundary AwarenessSong, C., Chen, Q., Li, F. W. B., Jiang, Z., Zheng, D., Shen, Y., & Yang, B. (2024). Multi-Feature Fusion Enhanced Monocular Depth Estimation With Boundary Awareness. Visual Computer, 40, 4955–4967. https://doi.org/10.1007/s00371-024-03498-w
- Multi-Style Cartoonization: Leveraging Multiple Datasets With GANsCai, J., Li, F. W. B., Nan, F., & Yang, B. (2024). Multi-Style Cartoonization: Leveraging Multiple Datasets With GANs. Computer Animation and Virtual Worlds, 35(3), Article e2269. https://doi.org/10.1002/cav.2269
- An end-to-end dynamic point cloud geometry compression in latent spaceJiang, Z., Wang, G., Tam, G. K. L., Song, C., Yang, B., & Li, F. W. B. (2023). An end-to-end dynamic point cloud geometry compression in latent space. Displays, 80, Article 102528. https://doi.org/10.1016/j.displa.2023.102528
- A Differential Diffusion Theory for Participating MediaCen, Y., Li, C., Li, F. W. B., Yang, B., & Liang, X. (2023). A Differential Diffusion Theory for Participating Media. Computer Graphics Forum, 42(7), Article e14956. https://doi.org/10.1111/cgf.14956
- C2SPoint: A classification-to-saliency network for point cloud saliency detectionJiang, Z., Ding, L., Tam, G., Song, C., Li, F. W., & Yang, B. (2023). C2SPoint: A classification-to-saliency network for point cloud saliency detection. Computers & Graphics, 115, 274-284. https://doi.org/10.1016/j.cag.2023.07.003
- A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile DermatomyositisZhou, K., Cai, R., Ma, Y., Tan, Q., Wang, X., Li, J., Shum, H. P., Li, F. W., Jin, S., & Liang, X. (2023). A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis. IEEE Transactions on Visualization and Computer Graphics, 29(5), 2456-2466. https://doi.org/10.1109/tvcg.2023.3247092
- IAACS: Image Aesthetic Assessment Through Color Composition And Space FormationYang, B., zhu, C., Li, F. W., Wei, T., Liang, X., & Wang, Q. (2023). IAACS: Image Aesthetic Assessment Through Color Composition And Space Formation. Virtual Reality & Intelligent Hardware, 5(1). https://doi.org/10.1016/j.vrih.2022.06.006
- Distillation of human–object interaction contexts for action recognitionAlmushyti, M., & Li, F. W. (2022). Distillation of human–object interaction contexts for action recognition. Computer Animation and Virtual Worlds, 33(5), Article e2107. https://doi.org/10.1002/cav.2107
- Facial reshaping operator for controllable face beautificationHu, S., Shum, H. P., Liang, X., Li, F. W., & Aslam, N. (2021). Facial reshaping operator for controllable face beautification. Expert Systems With Applications, 167, Article 114067. https://doi.org/10.1016/j.eswa.2020.114067
- A Unified Deep Metric Representation for Mesh Saliency Detection and Non-rigid Shape MatchingHu, S., Shum, H., Aslam, N., Li, F. W., & Liang, X. (2020). A Unified Deep Metric Representation for Mesh Saliency Detection and Non-rigid Shape Matching. IEEE Transactions on Multimedia, 22(9), 2278-2292. https://doi.org/10.1109/tmm.2019.2952983
- Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural NetworkZhang, Z., Ma, Y., Li, Y., Li, F. W., Shum, H. P., Yang, B., Guo, J., & Liang, X. (2020). Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network. Graphical Models, 111, Article 101083. https://doi.org/10.1016/j.gmod.2020.101083
- Sparse Metric-based Mesh SaliencyHu, S., Liang, X., Shum, H. P., Li, F. W., & Aslam, N. (2020). Sparse Metric-based Mesh Saliency. Neurocomputing, 400, 11-23. https://doi.org/10.1016/j.neucom.2020.02.106
- Example-based Image Recoloring in Indoor EnvironmentLin, X., Wang, X., Li, F. W., Li, J., Yang, B., Zhang, K., & Wei, T. (2020). Example-based Image Recoloring in Indoor Environment. Computer Animation and Virtual Worlds, 31(2), Article e1917. https://doi.org/10.1002/cav.1917
- Target‐driven cloud evolution using position‐based fluidsZhang, Z., Li, Y., Yang, B., Li, F. W., & Liang, X. (2020). Target‐driven cloud evolution using position‐based fluids. Computer Animation and Virtual Worlds, 31(6). https://doi.org/10.1002/cav.1937
- Compressed Dynamic Mesh Sequence for Progressive StreamingYang, B., Jiang, Z., Shangguan, J., Li, F. W., Song, C., Guo, Y., & Xu, M. (2019). Compressed Dynamic Mesh Sequence for Progressive Streaming. Computer Animation and Virtual Worlds, 30(6), Article e1847. https://doi.org/10.1002/cav.1847
- A Color-Pair Based Approach for Accurate Color Harmony EstimationYang, B., Wei, T., Fang, X., Deng, Z., Li, F. W., Ling, Y., & Wang, X. (2019). A Color-Pair Based Approach for Accurate Color Harmony Estimation. Computer Graphics Forum, 38(7), 481-490. https://doi.org/10.1111/cgf.13854
- No-reference synthetic image quality assessment with convolutional neural network and local image saliencyWang, X., Liang, X., Yang, B., & Li, F. W. (2019). No-reference synthetic image quality assessment with convolutional neural network and local image saliency. Computational Visual Media, 5(2), 193-208. https://doi.org/10.1007/s41095-019-0131-6
- Motion-aware Compression and Transmission of Mesh Animation SequencesYang, B., Zhang, L., Li, F. W., Xiaoheng, J., Zhigang, D., Wang, M., & Xu, M. (2019). Motion-aware Compression and Transmission of Mesh Animation Sequences. ACM Transactions on Intelligent Systems and Technology, 10(3), Article 25. https://doi.org/10.1145/3300198
- Study on student performance estimation, student progress analysis, and student potential prediction based on data miningYang, F., & Li, F. W. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers & Education, 123, 97-108. https://doi.org/10.1016/j.compedu.2018.04.006
- Scalable Remote Rendering using Synthesized Image Quality AssessmentWang, X., Liang, X., Yang, B., & Li, F. W. (2018). Scalable Remote Rendering using Synthesized Image Quality Assessment. IEEE Access, 6, 36595-36610. https://doi.org/10.1109/access.2018.2853132
- Modeling Cumulus Cloud Scenes from High-resolution Satellite ImagesZhang, Z., Liang, X., Yuan, C., & Li, F. W. (2017). Modeling Cumulus Cloud Scenes from High-resolution Satellite Images. Computer Graphics Forum, 36(7), 229-238. https://doi.org/10.1111/cgf.13288
- Visual saliency guided textured model simplificationYang, B., Li, F. W., Wang, X., Xu, M., Liang, X., Jiang, Z., & Jiang, Y. (2016). Visual saliency guided textured model simplification. Visual Computer, 32(11), 1415-1432. https://doi.org/10.1007/s00371-015-1129-4
- 3D Mesh Compression and Transmission for Mobile Robotic ApplicationsYang, B., Wang, X., Li, F. W., Xie, B., Liang, X., & Jiang, Z. (2016). 3D Mesh Compression and Transmission for Mobile Robotic Applications. International Journal of Advanced Robotic Systems, 13, Article 9. https://doi.org/10.5772/62035
- Recent development in multimedia e-learning technologiesLau, R. W., Yen, N. Y., Li, F. W., & Wah, B. (2014). Recent development in multimedia e-learning technologies. World Wide Web, 17(2), 189-198. https://doi.org/10.1007/s11280-013-0206-8
- A Fine-Grained Outcome-Based Learning Path ModelYang, F., Li, F. W., & Lau, R. W. (2014). A Fine-Grained Outcome-Based Learning Path Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems., 44(2), 235-245. https://doi.org/10.1109/tsmcc.2013.2263133
- Utilizing Massive Spatiotemporal Samples for Efficient and Accurate Trajectory PredictionChan, A., & Li, F. W. (2013). Utilizing Massive Spatiotemporal Samples for Efficient and Accurate Trajectory Prediction. IEEE Transactions on Mobile Computing, 12(12), 2346-2359. https://doi.org/10.1109/tmc.2012.214
- Feature-Varying SkeletonizationWillcocks, C. G., & Li, F. W. (2012). Feature-Varying Skeletonization. Visual Computer, 28(6-8), 775-785. https://doi.org/10.1007/s00371-012-0688-x
- Game-On-Demand: An Online Game Engine based on Geometry StreamingLi, F., Lau, R., Kilis, D., & Li, L. (2011). Game-On-Demand: An Online Game Engine based on Geometry Streaming. ACM Transactions on Multimedia Computing, Communications and Applications, 7(3), Article 19. https://doi.org/10.1145/2000486.2000493
- A Mobile Environment for Sketching-based Skeleton GenerationZheng, Q., & Li, F. (2011). A Mobile Environment for Sketching-based Skeleton Generation. World Wide Web, 14(3), 261-279. https://doi.org/10.1007/s11280-010-0104-2
- An Adaptive Course Generation FrameworkLi, F., Lau, R., & Dharmendran, P. (2010). An Adaptive Course Generation Framework. International Journal of Distance Education Technologies, 8(3), 74-85. https://doi.org/10.4018/jdet.2010070104
- Emerging Internet Technologies for E-LearningLi, Q., Lau, R., Leung, E., Li, F., Lee, V., Wah, B. W., & Ashman, H. (2009). Emerging Internet Technologies for E-Learning. IEEE Internet Computing, 13(4), 11-17. https://doi.org/10.1109/mic.2009.83
- An Efficient Method for Simulating Flexible ConnectorsLi, F., Zhao, J., Lam, B., & Lau, R. (2009). An Efficient Method for Simulating Flexible Connectors. Journal of Multimedia., 4(2), 94-100. https://doi.org/10.4304/jmm.4.2.94-100
- An Effective Error Resilient Packetization Scheme for Progressive Mesh Transmission over Unreliable NetworksYang, B.-L., Li, F., Pan, Z., & Wang, X. (2008). An Effective Error Resilient Packetization Scheme for Progressive Mesh Transmission over Unreliable Networks. Journal of Computer Science and Technology, 23(6), 1015-1025. https://doi.org/10.1007/s11390-008-9195-y
- Technology Supports for Distributed and Collaborative Learning over the InternetLi, Q., Lau, R., Shih, T., & Li, F. (2008). Technology Supports for Distributed and Collaborative Learning over the Internet. ACM Transactions on Internet Technology, 8(2), Article 10. https://doi.org/10.1145/1323651.1323656
- Adaptive Animation of Human Motion for e-Learning ApplicationsLi, F., Lau, R., Komura, T., Wang, M., & Siu, B. (2007). Adaptive Animation of Human Motion for e-Learning Applications. International Journal of Distance Education Technologies, 5(2), 74-85.
- A Trajectory-Preserving Synchronization Method for Collaborative VisualizationLi, L., Li, F., & Lau, R. (2006). A Trajectory-Preserving Synchronization Method for Collaborative Visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5), 989-996. https://doi.org/10.1109/tvcg.2006.114
- Efficient Rendering of Deformable Objects for Real-time ApplicationsCheung, G., Lau, R., & Li, F. (2006). Efficient Rendering of Deformable Objects for Real-time Applications. Computer Animation and Virtual Worlds, 17(1), 69-81. https://doi.org/10.1002/cav.71
- Multi-server support for large scale distributed virtual environmentsNg, B., Lau, R. W., Si, A., & Li, F. (2005). Multi-server support for large scale distributed virtual environments. IEEE Transactions on Multimedia, 7(6), 1054-1065. https://doi.org/10.1109/tmm.2005.858388
- VSculpt : a distributed virtual sculpting environment for collaborative designLi, F., Lau, R. W., & Ng, F. (2003). VSculpt : a distributed virtual sculpting environment for collaborative design. IEEE Transactions on Multimedia, 5(4), 570-580. https://doi.org/10.1109/tmm.2003.814795
- Incremental polygonization of deforming NURBS surfaces.Li, F., & Lau, R. (1999). Incremental polygonization of deforming NURBS surfaces. Journal of Graphics Tools, 4(4), 37-50. https://doi.org/10.1080/10867651.1999.10487514
- Interactive Rendering of Deforming NURBS SurfacesLi, F., Lau, R., & Green, M. (1997). Interactive Rendering of Deforming NURBS Surfaces. Computer Graphics Forum, 16(3), 47-56. https://doi.org/10.1111/1467-8659.00141
- Emerging Web Graphics Standards and TechnologiesLau, R., Li, F., Kunii, T., Guo, B., Zhang, B., Magnenat-Thalmann, N., Kshirsagar, S., Thalmann, D., & Gutierrez, M. (n.d.). Emerging Web Graphics Standards and Technologies. IEEE Computer Graphics & Applications, 66-75.