Staff profile
Overview
Professor Fernando Galaz Garcia
Associate Professor
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences |
Research interests
- Differential Geometry
- Geometric Topology
- Metric Geometry
- Transformation Groups
Esteem Indicators
- 2000: 2018-Present: Associate Editor, Boletín de la Sociedad Matemática Mexicana
Publications
Chapter in book
- Galaz-García, F., & Núñez-Zimbrón, J. (2022). Three-dimensional Alexandrov spaces: A survey. In G. Arizmendi Echegaray, L. Hernández-Lamoneda, & R. Herrera Guzmán (Eds.), Recent Advances in Alexandrov Geometry (49-88). Springer Verlag. https://doi.org/10.1007/978-3-030-99298-9_2
- Galaz-García, F., Guijarro, L., & Núñez-Zimbrón, J. (2020). Collapsed 3-Dimensional Alexandrov Spaces: A Brief Survey. In O. Dearricott, W. Tuschmann, Y. Nikolayevsky, T. Leistner, & D. Crowley (Eds.), Differential geometry in the large (291-310). Cambridge University Press. https://doi.org/10.1017/9781108884136.017
- Galaz-Garcia, F. (2014). A Note on Maximal Symmetry Rank, Quasipositive Curvature, and Low Dimensional Manifolds. In Geometry of Manifolds with Non-negative Sectional Curvature (45-55). Springer Verlag. https://doi.org/10.1007/978-3-319-06373-7_3
Edited book
- Galaz-García, F., Pardo Millán, J. C., & Solórzano, P. (Eds.). (2018). Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics. American Mathematical Society. https://doi.org/10.1090/conm/709
- Bárcenas, N., Galaz-García, F., & Moreno Rocha, M. (Eds.). (2016). Mexican Mathematicians Abroad. American Mathematical Society. https://doi.org/10.1090/conm/657
Journal Article
- Cibotaru, D., & Galaz-García, F. (online). Kurdyka–Łojasiewicz functions and mapping cylinder neighborhoods. Annales de l'Institut Fourier, https://doi.org/10.5802/aif.3656
- Galaz Garcia, F., & Reiser, P. (in press). Free torus actions and twisted suspensions. Forum of Mathematics, Sigma,
- Che, M., Galaz Garcia, F., Guijarro, L., & Membrillo Solis, I. (2024). Metric geometry of spaces of persistence diagrams. Journal of Applied and Computational Topology, 8(8), 2197-2246. https://doi.org/10.1007/s41468-024-00189-2
- Che, M., Galaz-García, F., Guijarro, L., Membrillo Solis, I., & Valiunas, M. (2024). Basic metric geometry of the bottleneck distance. Proceedings of the American Mathematical Society, 152(8), 3575-3591. https://doi.org/10.1090/proc/16776
- DeVito, J., Galaz-García, F., & Kerin, M. (2023). Manifolds that admit a double disk-bundle decomposition. Indiana University Mathematics Journal, 72(4), 1503-1551. https://doi.org/10.1512/iumj.2023.72.9408
- Frenck, G., Galaz‐García, F., & Reiser, P. (2022). Cohomogeneity one manifolds and homogeneous spaces of positive scalar curvature. Bulletin of the London Mathematical Society, 54(1), 71-82. https://doi.org/10.1112/blms.12557
- Galaz-García, F., Kerin, M., & Radeschi, M. (2021). Torus actions on rationally elliptic manifolds. Mathematische Zeitschrift, 297, 197-221. https://doi.org/10.1007/s00209-020-02508-6
- Eltzner, B., Galaz-García, F., Huckemann, S. F., & Tuschmann, W. (2021). Stability of the cut locus and a Central Limit Theorem for Fréchet means of Riemannian manifolds. Proceedings of the American Mathematical Society, 149(9), 3947-3963. https://doi.org/10.1090/proc/15429
- Galaz-García, F., & Zarei, M. (2020). Cohomogeneity one Alexandrov spaces in low dimensions. Annals of Global Analysis and Geometry, 58(2), 109-146. https://doi.org/10.1007/s10455-020-09716-7
- Corro, D., & Galaz-García, F. (2020). Positive Ricci curvature on simply-connected manifolds with cohomogeneity-two torus actions. Proceedings of the American Mathematical Society, 148(7), 3087-3097. https://doi.org/10.1090/proc/14961
- Galaz-García, F., & Tuschmann, W. (2020). Finiteness and realization theorems for Alexandrov spaces with bounded curvature. Boletín de la Sociedad Matemática Mexicana, 26(2), 749-756. https://doi.org/10.1007/s40590-019-00262-2
- Galaz-García, F., Guijarro, L., & Núñez-Zimbrón, J. (2020). Sufficiently collapsed irreducible Alexandrov 3-spaces are geometric. Indiana University Mathematics Journal, 69(3), 977-1005. https://doi.org/10.1512/iumj.2020.69.7879
- Galaz-García, F., & Núñez-Zimbrón, J. (2020). Three-dimensional Alexandrov spaces with local isometric circle actions. Kyoto journal of mathematics, 60(3), 801-823. https://doi.org/10.1215/21562261-2019-0047
- Galaz-García, F., Kerin, M., Radeschi, M., & Wiemeler, M. (2018). Torus Orbifolds, Slice-Maximal Torus Actions, and Rational Ellipticity. International Mathematics Research Notices, 2018(18), 5786-5822. https://doi.org/10.1093/imrn/rnx064
- Galaz-García, F., & Zarei, M. (2018). Cohomogeneity one topological manifolds revisited. Mathematische Zeitschrift, 288(3-4), 829-853. https://doi.org/10.1007/s00209-017-1915-y
- Deng, Q., Galaz-García, F., Guijarro, L., & Munn, M. (2018). Three-Dimensional Alexandrov Spaces with Positive or Nonnegative Ricci Curvature. Potential Analysis, 48(2), 223-238. https://doi.org/10.1007/s11118-017-9633-y
- Galaz-García, F., Kell, M., Mondino, A., & Sosa, G. (2018). On quotients of spaces with Ricci curvature bounded below. Journal of Functional Analysis, 275(6), 1368-1446. https://doi.org/10.1016/j.jfa.2018.06.002
- Galaz-García, F. (2016). A glance at three-dimensional Alexandrov spaces. Frontiers of Mathematics in China, 11(5), 1189-1206. https://doi.org/10.1007/s11464-016-0582-3
- Galaz-Garcia, F., & Radeschi, M. (2015). Singular Riemannian foliations and applications to positive and non-negative curvature. Journal of Topology, 8(3), 603-620. https://doi.org/10.1112/jtopol/jtv004
- Galaz-García, F., & Guijarro, L. (2015). Every point in a Riemannian manifold is critical. Calculus of Variations and Partial Differential Equations, 54(2), 2079-2084. https://doi.org/10.1007/s00526-015-0857-7
- Galaz-Garcia, F., & Searle, C. (2014). Nonnegatively curved 5–manifolds with almost maximal symmetry rank. Geometry & Topology, 18(3), 1397-1435. https://doi.org/10.2140/gt.2014.18.1397
- Galaz-Garcia, F., & Kerin, M. (2014). Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension. Mathematische Zeitschrift, 276(1-2), 133-152. https://doi.org/10.1007/s00209-013-1190-5
- Galaz-Garcia, F., & Spindeler, W. (2014). Erratum to: Nonnegatively curved fixed point homogeneous 5-manifolds. Annals of Global Analysis and Geometry, 45(2), 151-153. https://doi.org/10.1007/s10455-013-9402-0
- Galaz-Garcia, F., & Guijarro, L. (2014). On Three-Dimensional Alexandrov Spaces. International Mathematics Research Notices, 2015(14), 5560-5576. https://doi.org/10.1093/imrn/rnu101
- Galaz-Garcia, F., & Guijarro, L. (2013). Isometry groups of Alexandrov spaces. Bulletin of the London Mathematical Society, 45(3), 567-579. https://doi.org/10.1112/blms/bds101
- Galaz-Garcia, F., & Spindeler, W. (2012). Nonnegatively curved fixed point homogeneous 5-manifolds. Annals of Global Analysis and Geometry, 41(2), 253-263. https://doi.org/10.1007/s10455-011-9282-0
- Galaz-Garcia, F. (2012). Nonnegatively curved fixed point homogeneous manifolds in low dimensions. Geometriae Dedicata, 157(1), 367-396. https://doi.org/10.1007/s10711-011-9615-y
- Galaz-Garcia, F., & Searle, C. (2011). Cohomogeneity one Alexandrov spaces. Transformation Groups, 16(1), 91-107. https://doi.org/10.1007/s00031-011-9122-0
- Galaz-Garcia, F., & Searle, C. (2010). Low-dimensional manifolds with non-negative curvature and maximal symmetry rank. Proceedings of the American Mathematical Society, 139(7), 2559-2564. https://doi.org/10.1090/s0002-9939-2010-10655-x
- Galaz-Garcia, F. (2009). Bounds on Characteristic Numbers by Curvature and Radius. The Rocky Mountain journal of mathematics, 39(4), 1225-1231. https://doi.org/10.1216/rmj-2009-39-4-1225
- Galaz-Garcia, F. (2008). Examples of 4-manifolds with almost nonpositive curvature. Differential Geometry and its Applications, 26(6), 697-703. https://doi.org/10.1016/j.difgeo.2008.10.001