Skip to main content
Overview
Affiliations
AffiliationTelephone
Associate Professor in the Department of Computer Science+44 (0) 191 33 42515

Biography

I am an Associate Professor at Durham University in the Algorithms and Complexity Group (ACiD) within the Department of Computer Science. I was previously a lecturer in the Foundations of Computing Group at Middlesex University. Before my permanent appointments I undertook a number of post-doctoral positions in Durham and Paris.

My interests include Complexity Theory in general (Proof Complexity as well as Computational Complexity); Finite Model Theory; and the links between logic and complexity. I am mostly working now on forms of Constraint Satisfaction Problem, Proof Complexity and Algorithmic Graph Theory.

Publications

Conference Paper

  • Complexity framework for forbidden subgraphs II: Edge subdivision and the "H"-graphs
    Lozin, V. V., Martin, B., Pandey, S., Paulusma, D., Siggers, M., Smith, S., & van Leeuwen, E. J. (2024). Complexity framework for forbidden subgraphs II: Edge subdivision and the "H"-graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024) (pp. 47:1-47:18). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.ISAAC.2024.47
  • Complexity framework for forbidden subgraphs IV: The Steiner Forest problem
    Bodlaender, H. L., Johnson, M., Martin, B., Oostveen, J. .J., Pandey, S., Paulusma, D., Smith, S., & van Leeuwen, E. J. (2024). Complexity framework for forbidden subgraphs IV: The Steiner Forest problem. Lecture Notes in Computer Science, 14764, 206-217. https://doi.org/10.1007/978-3-031-63021-7_16
  • Edge Multiway Cut and Node Multiway Cut are hard for planar subcubic graphs
    Johnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., & van Leeuwen, E. J. (2024). Edge Multiway Cut and Node Multiway Cut are hard for planar subcubic graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024) (pp. 29:1-29:17). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SWAT.2024.29
  • Complexity Framework for Forbidden Subgraphs III: When Problems are Tractable on Subcubic Graphs
    Johnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., & Van Leeuwen, E. J. (2023). Complexity Framework for Forbidden Subgraphs III: When Problems are Tractable on Subcubic Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023) (pp. 57:1-57:15). https://doi.org/10.4230/LIPIcs.MFCS.2023.57
  • Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs
    Martin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2022). Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs. In Graph-Theoretic Concepts in Computer Science. 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers (pp. 398-411). Springer Verlag. https://doi.org/10.1007/978-3-031-15914-5_29
  • Few induced disjoint paths for H-free graphs
    Martin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2022). Few induced disjoint paths for H-free graphs. In I. Ljubić, F. Barahona, S. S. Dey, & A. Ridha Mahjoub (Eds.), Combinatorial Optimization 7th International Symposium, ISCO 2022 (pp. 89-101). Springer. https://doi.org/10.1007/978-3-031-18530-4_7
  • The Complexity of L(p,q)-Edge-Labelling
    Berthe, G., Martin, B., Paulusma, D., & Smith, S. (2022). The Complexity of L(p,q)-Edge-Labelling. In P. Mutzel, M. . S. Rahman, & Slamin (Eds.), WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24-26, 2022, Proceedings (pp. 175-186). Springer Verlag. https://doi.org/10.1007/978-3-030-96731-4_15
  • Injective colouring for H-free graphs
    Bok, J., Jedličková, N., Martin, B., Paulusma, D., & Smith, S. (2021). Injective colouring for H-free graphs. In Lecture Notes in Computer Science. Springer Verlag.
  • Acyclic, star and injective colouring: bounding the diameter
    Brause, C., Golovach, P., Martin, B., Paulusma, D., & Smith, S. (2021). Acyclic, star and injective colouring: bounding the diameter. In Łukasz Kowalik, M. Pilipczuk, & P. Rzążewski (Eds.), Graph-Theoretic Concepts in Computer Science: 47th International Workshop, WG 2021, Warsaw, Poland, June 23–25, 2021, Revised Selected Papers (1st ed., pp. 336-348). Springer Verlag. https://doi.org/10.1007/978-3-030-86838-3_26
  • QCSP on reflexive tournaments
    Larose, B., Markovic, P., Martin, B., Paulusma, D., Smith, S., & Zivny, S. (2021). QCSP on reflexive tournaments. In P. Mutzel, R. Pagh, & G. Herman (Eds.), Leibniz International Proceedings in Informatics (pp. 58:1-58:15). Dagstuhl. https://doi.org/10.4230/lipics.esa.2021.58
  • Disjoint paths and connected subgraphs for H-free graphs
    Kern, W., Martin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2021). Disjoint paths and connected subgraphs for H-free graphs. In P. Flocchini & L. Moura (Eds.), Combinatorial Algorithms: 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings (pp. 414-427). Springer Verlag. https://doi.org/10.1007/978-3-030-79987-8_29
  • Colouring graphs of bounded diameter in the absence of small cycles
    Martin, B., Paulusma, D., & Smith, S. (2021). Colouring graphs of bounded diameter in the absence of small cycles. In T. Calamoneri & F. Corò (Eds.), Lecture Notes in Computer Science (pp. 367-380). Springer Verlag. https://doi.org/10.1007/978-3-030-75242-2_26
  • Partitioning H-free graphs of bounded diameter
    Brause, C., Golovach, P. A., Martin, B., Paulusma, D., & Smith, S. (2021). Partitioning H-free graphs of bounded diameter. In H.-K. Ahn & K. Sadakane (Eds.), Leibniz International Proceedings in Informatics (pp. 21:1-21:14). Schloss Dagstuhl. https://doi.org/10.4230/lipics.isaac.2021.21
  • Acyclic, star and injective colouring: a complexity picture for H-free graphs
    Bok, J., Jedlickova, N., Martin, B., Paulusma, D., & Smith, S. (2020). Acyclic, star and injective colouring: a complexity picture for H-free graphs. In Leibniz International Proceedings in Informatics. Schloss Dagstuhl. https://doi.org/10.4230/lipics.esa.2020.22
  • QCSP monsters and the demise of the chen conjecture
    Zhuk, D., & Martin, B. (2020). QCSP monsters and the demise of the chen conjecture. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, & J. Chuzhoy (Eds.), Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (pp. 91-104). Association for Computing Machinery (ACM). https://doi.org/10.1145/3357713.3384232
  • Sherali-Adams and the binary encoding of combinatorial principles
    Dantchev, S., Ghani, A., & Martin, B. (2020). Sherali-Adams and the binary encoding of combinatorial principles. In Y. Kohayakawa & F. K. Miyazawa (Eds.), LATIN 2020: Theoretical Informatics (pp. 336-347). Springer Verlag. https://doi.org/10.1007/978-3-030-61792-9_27
  • Colouring H-free graphs of bounded diameter
    Martin, B., Paulusma, D., & Smith, S. (2019). Colouring H-free graphs of bounded diameter. In P. Rossmanith, P. Heggernes, & J.-P. Katoen (Eds.), 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). (pp. 14:1-14:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.mfcs.2019.14
  • Resolution and the binary encoding of combinatorial principles
    Dantchev, S., Galesi, N., & Martin, B. (2019). Resolution and the binary encoding of combinatorial principles. In A. Shpilka (Ed.), 34th Computational Complexity Conference (CCC 2019). (pp. 6:1-6:25). Dagstuhl Publishing. https://doi.org/10.4230/lipics.ccc.2019.6
  • Consistency for counting quantifiers
    Madelaine, F., & Martin, B. (2018). Consistency for counting quantifiers. In I. Potapov, P. Spirakis, & J. Worrell (Eds.), 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). August 27-31, 2018, Liverpool (UK). (pp. 11:1-11:13). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing. https://doi.org/10.4230/lipics.mfcs.2018.11
  • The complexity of disjunctive linear Diophantine constraints
    Bodirsky, M., Mamino, M., Martin, B., & Mottet, A. (2018). The complexity of disjunctive linear Diophantine constraints. In I. Potapov, P. Spirakis, & J. Worrell (Eds.), 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). August 27-31, 2018, Liverpool (UK). (pp. 33:1-33:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing. https://doi.org/10.4230/lipics.mfcs.2018.33
  • Classification Transfer for Qualitative Reasoning Problems
    Bodirsky, M., Jonsson, P., Martin, B., & Mottet, A. (2018). Classification Transfer for Qualitative Reasoning Problems. In J. Lang (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). (pp. 1256-1262). International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2018/175
  • Surjective H-Colouring over Reflexive Digraphs
    Larose, B., Martin, B., & Paulusma, D. (2018). Surjective H-Colouring over Reflexive Digraphs. In R. Niedermeier & B. Vallée (Eds.), 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018) : February 28–March 3, 2018, Caen, France. (pp. 49:1-49:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.stacs.2018.49
  • Disconnected Cuts in Claw-free Graphs
    Martin, B., Paulusma, D., & van Leeuwen, E. J. (2018). Disconnected Cuts in Claw-free Graphs. In Y. Azar, H. Bast, & G. Herman (Eds.), 26th Annual European Symposium on Algorithms (ESA 2018). (pp. 61:1-61:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing. https://doi.org/10.4230/lipics.esa.2018.61
  • The complexity of quantified constraints using the algebraic formulation
    Carvalho, C., Martin, B., Zhuk, D., Larsen, K. G., Bodlaender, H. L., & Raskin, J.-F. (2017). The complexity of quantified constraints using the algebraic formulation. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017) : August 21-25, 2017, Aalborg (Denmark) ; proceedings.. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.mfcs.2017.27
  • Constraint Satisfaction Problems for Reducts of Homogeneous Graphs
    Bodirsky, M., Martin, B., Pinsker, M., & Pongrácz, A. (2016). Constraint Satisfaction Problems for Reducts of Homogeneous Graphs. In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, & D. Sangiorgi (Eds.), 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, Rome, Italy, July 12–15, 2016.. Schloss Dagstuhl, Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.icalp.2016.119
  • From Complexity to Algebra and Back: Digraph Classes, Collapsibility, and the PGP
    Carvalho, C., Madelaine, F. R., & Martin, B. (2015). From Complexity to Algebra and Back: Digraph Classes, Collapsibility, and the PGP. In Proceedings, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015) : 6-10 July 2015, Kyoto, Japan. (pp. 462-474). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/lics.2015.50
  • Constraint Satisfaction Problems over the Integers with Successor
    Bodirsky, M., Martin, B., & Mottet, A. (2015). Constraint Satisfaction Problems over the Integers with Successor. In M. M. Halldórsson, K. Iwama, N. Kobayashi, & B. Speckmann (Eds.), Automata, languages, and programming : 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015. Proceedings. Part I. (pp. 256-267). Springer Verlag. https://doi.org/10.1007/978-3-662-47672-7_21

Journal Article

Supervision students