Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1390
Dr Barnaby Martin
Associate Professor
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Computer Science | +44 (0) 191 33 42515 |
Biography
I am an Associate Professor at Durham University in the Algorithms and Complexity Group (ACiD) within the Department of Computer Science. I was previously a lecturer in the Foundations of Computing Group at Middlesex University. Before my permanent appointments I undertook a number of post-doctoral positions in Durham and Paris.
My interests include Complexity Theory in general (Proof Complexity as well as Computational Complexity); Finite Model Theory; and the links between logic and complexity. I am mostly working now on forms of Constraint Satisfaction Problem, Proof Complexity and Algorithmic Graph Theory.
Publications
Conference Paper
- Complexity framework for forbidden subgraphs II: Edge subdivision and the "H"-graphsLozin, V. V., Martin, B., Pandey, S., Paulusma, D., Siggers, M., Smith, S., & van Leeuwen, E. J. (2024). Complexity framework for forbidden subgraphs II: Edge subdivision and the "H"-graphs. In 35th International Symposium on Algorithms and Computation (ISAAC 2024) (pp. 47:1-47:18). Schloss Dagstuhl. https://doi.org/10.4230/LIPIcs.ISAAC.2024.47
- Complexity framework for forbidden subgraphs IV: The Steiner Forest problemBodlaender, H. L., Johnson, M., Martin, B., Oostveen, J. .J., Pandey, S., Paulusma, D., Smith, S., & van Leeuwen, E. J. (2024). Complexity framework for forbidden subgraphs IV: The Steiner Forest problem. Lecture Notes in Computer Science, 14764, 206-217. https://doi.org/10.1007/978-3-031-63021-7_16
- Edge Multiway Cut and Node Multiway Cut are hard for planar subcubic graphsJohnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., & van Leeuwen, E. J. (2024). Edge Multiway Cut and Node Multiway Cut are hard for planar subcubic graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024) (pp. 29:1-29:17). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SWAT.2024.29
- Complexity Framework for Forbidden Subgraphs III: When Problems are Tractable on Subcubic GraphsJohnson, M., Martin, B., Pandey, S., Paulusma, D., Smith, S., & Van Leeuwen, E. J. (2023). Complexity Framework for Forbidden Subgraphs III: When Problems are Tractable on Subcubic Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023) (pp. 57:1-57:15). https://doi.org/10.4230/LIPIcs.MFCS.2023.57
- Induced Disjoint Paths and Connected Subgraphs for H-Free GraphsMartin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2022). Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs. In Graph-Theoretic Concepts in Computer Science. 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022, Revised Selected Papers (pp. 398-411). Springer Verlag. https://doi.org/10.1007/978-3-031-15914-5_29
- Few induced disjoint paths for H-free graphsMartin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2022). Few induced disjoint paths for H-free graphs. In I. Ljubić, F. Barahona, S. S. Dey, & A. Ridha Mahjoub (Eds.), Combinatorial Optimization 7th International Symposium, ISCO 2022 (pp. 89-101). Springer. https://doi.org/10.1007/978-3-031-18530-4_7
- The Complexity of L(p,q)-Edge-LabellingBerthe, G., Martin, B., Paulusma, D., & Smith, S. (2022). The Complexity of L(p,q)-Edge-Labelling. In P. Mutzel, M. . S. Rahman, & Slamin (Eds.), WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24-26, 2022, Proceedings (pp. 175-186). Springer Verlag. https://doi.org/10.1007/978-3-030-96731-4_15
- Injective colouring for H-free graphsBok, J., Jedličková, N., Martin, B., Paulusma, D., & Smith, S. (2021). Injective colouring for H-free graphs. In Lecture Notes in Computer Science. Springer Verlag.
- Acyclic, star and injective colouring: bounding the diameterBrause, C., Golovach, P., Martin, B., Paulusma, D., & Smith, S. (2021). Acyclic, star and injective colouring: bounding the diameter. In Łukasz Kowalik, M. Pilipczuk, & P. Rzążewski (Eds.), Graph-Theoretic Concepts in Computer Science: 47th International Workshop, WG 2021, Warsaw, Poland, June 23–25, 2021, Revised Selected Papers (1st ed., pp. 336-348). Springer Verlag. https://doi.org/10.1007/978-3-030-86838-3_26
- QCSP on reflexive tournamentsLarose, B., Markovic, P., Martin, B., Paulusma, D., Smith, S., & Zivny, S. (2021). QCSP on reflexive tournaments. In P. Mutzel, R. Pagh, & G. Herman (Eds.), Leibniz International Proceedings in Informatics (pp. 58:1-58:15). Dagstuhl. https://doi.org/10.4230/lipics.esa.2021.58
- Disjoint paths and connected subgraphs for H-free graphsKern, W., Martin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2021). Disjoint paths and connected subgraphs for H-free graphs. In P. Flocchini & L. Moura (Eds.), Combinatorial Algorithms: 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings (pp. 414-427). Springer Verlag. https://doi.org/10.1007/978-3-030-79987-8_29
- Colouring graphs of bounded diameter in the absence of small cyclesMartin, B., Paulusma, D., & Smith, S. (2021). Colouring graphs of bounded diameter in the absence of small cycles. In T. Calamoneri & F. Corò (Eds.), Lecture Notes in Computer Science (pp. 367-380). Springer Verlag. https://doi.org/10.1007/978-3-030-75242-2_26
- Partitioning H-free graphs of bounded diameterBrause, C., Golovach, P. A., Martin, B., Paulusma, D., & Smith, S. (2021). Partitioning H-free graphs of bounded diameter. In H.-K. Ahn & K. Sadakane (Eds.), Leibniz International Proceedings in Informatics (pp. 21:1-21:14). Schloss Dagstuhl. https://doi.org/10.4230/lipics.isaac.2021.21
- Acyclic, star and injective colouring: a complexity picture for H-free graphsBok, J., Jedlickova, N., Martin, B., Paulusma, D., & Smith, S. (2020). Acyclic, star and injective colouring: a complexity picture for H-free graphs. In Leibniz International Proceedings in Informatics. Schloss Dagstuhl. https://doi.org/10.4230/lipics.esa.2020.22
- QCSP monsters and the demise of the chen conjectureZhuk, D., & Martin, B. (2020). QCSP monsters and the demise of the chen conjecture. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, & J. Chuzhoy (Eds.), Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (pp. 91-104). Association for Computing Machinery (ACM). https://doi.org/10.1145/3357713.3384232
- Sherali-Adams and the binary encoding of combinatorial principlesDantchev, S., Ghani, A., & Martin, B. (2020). Sherali-Adams and the binary encoding of combinatorial principles. In Y. Kohayakawa & F. K. Miyazawa (Eds.), LATIN 2020: Theoretical Informatics (pp. 336-347). Springer Verlag. https://doi.org/10.1007/978-3-030-61792-9_27
- Colouring H-free graphs of bounded diameterMartin, B., Paulusma, D., & Smith, S. (2019). Colouring H-free graphs of bounded diameter. In P. Rossmanith, P. Heggernes, & J.-P. Katoen (Eds.), 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). (pp. 14:1-14:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.mfcs.2019.14
- Resolution and the binary encoding of combinatorial principlesDantchev, S., Galesi, N., & Martin, B. (2019). Resolution and the binary encoding of combinatorial principles. In A. Shpilka (Ed.), 34th Computational Complexity Conference (CCC 2019). (pp. 6:1-6:25). Dagstuhl Publishing. https://doi.org/10.4230/lipics.ccc.2019.6
- Consistency for counting quantifiersMadelaine, F., & Martin, B. (2018). Consistency for counting quantifiers. In I. Potapov, P. Spirakis, & J. Worrell (Eds.), 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). August 27-31, 2018, Liverpool (UK). (pp. 11:1-11:13). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing. https://doi.org/10.4230/lipics.mfcs.2018.11
- The complexity of disjunctive linear Diophantine constraintsBodirsky, M., Mamino, M., Martin, B., & Mottet, A. (2018). The complexity of disjunctive linear Diophantine constraints. In I. Potapov, P. Spirakis, & J. Worrell (Eds.), 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). August 27-31, 2018, Liverpool (UK). (pp. 33:1-33:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing. https://doi.org/10.4230/lipics.mfcs.2018.33
- Classification Transfer for Qualitative Reasoning ProblemsBodirsky, M., Jonsson, P., Martin, B., & Mottet, A. (2018). Classification Transfer for Qualitative Reasoning Problems. In J. Lang (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). (pp. 1256-1262). International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2018/175
- Surjective H-Colouring over Reflexive DigraphsLarose, B., Martin, B., & Paulusma, D. (2018). Surjective H-Colouring over Reflexive Digraphs. In R. Niedermeier & B. Vallée (Eds.), 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018) : February 28–March 3, 2018, Caen, France. (pp. 49:1-49:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.stacs.2018.49
- Disconnected Cuts in Claw-free GraphsMartin, B., Paulusma, D., & van Leeuwen, E. J. (2018). Disconnected Cuts in Claw-free Graphs. In Y. Azar, H. Bast, & G. Herman (Eds.), 26th Annual European Symposium on Algorithms (ESA 2018). (pp. 61:1-61:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing. https://doi.org/10.4230/lipics.esa.2018.61
- The complexity of quantified constraints using the algebraic formulationCarvalho, C., Martin, B., Zhuk, D., Larsen, K. G., Bodlaender, H. L., & Raskin, J.-F. (2017). The complexity of quantified constraints using the algebraic formulation. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017) : August 21-25, 2017, Aalborg (Denmark) ; proceedings.. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.mfcs.2017.27
- Constraint Satisfaction Problems for Reducts of Homogeneous GraphsBodirsky, M., Martin, B., Pinsker, M., & Pongrácz, A. (2016). Constraint Satisfaction Problems for Reducts of Homogeneous Graphs. In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, & D. Sangiorgi (Eds.), 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, Rome, Italy, July 12–15, 2016.. Schloss Dagstuhl, Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.icalp.2016.119
- From Complexity to Algebra and Back: Digraph Classes, Collapsibility, and the PGPCarvalho, C., Madelaine, F. R., & Martin, B. (2015). From Complexity to Algebra and Back: Digraph Classes, Collapsibility, and the PGP. In Proceedings, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015) : 6-10 July 2015, Kyoto, Japan. (pp. 462-474). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/lics.2015.50
- Constraint Satisfaction Problems over the Integers with SuccessorBodirsky, M., Martin, B., & Mottet, A. (2015). Constraint Satisfaction Problems over the Integers with Successor. In M. M. Halldórsson, K. Iwama, N. Kobayashi, & B. Speckmann (Eds.), Automata, languages, and programming : 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015. Proceedings. Part I. (pp. 256-267). Springer Verlag. https://doi.org/10.1007/978-3-662-47672-7_21
Journal Article
- Complexity Framework for Forbidden Subgraphs I: The FrameworkJohnson, M., Martin, B., Oostveen, J. J., Pandey, S., Paulusma, D., Smith, S., & van Leeuwen, E. J. (2025). Complexity Framework for Forbidden Subgraphs I: The Framework. Algorithmica, 87(3), 429-464. https://doi.org/10.1007/s00453-024-01289-2
- Complexity Classification Transfer for CSPs via Algebraic ProductsBodirsky, M., Jonsson, P., Martin, B., Mottet, A., & Semanišinová, Žaneta. (2024). Complexity Classification Transfer for CSPs via Algebraic Products. SIAM Journal on Computing, 53(5), 1293-1353. https://doi.org/10.1137/22m1534304
- Proof Complexity and the Binary Encoding of Combinatorial PrinciplesDantchev, S., Galesi, N., Ghani, A., & Martin, B. (2024). Proof Complexity and the Binary Encoding of Combinatorial Principles. SIAM Journal on Computing, 53(3), 764-802. https://doi.org/10.1137/20m134784x
- Depth lower bounds in Stabbing Planes for combinatorial principlesDantchev, S., Galesi, N., Ghani, A., & Martin, B. (2024). Depth lower bounds in Stabbing Planes for combinatorial principles. Logical Methods in Computer Science, 20(1), 1-19. https://doi.org/10.46298/lmcs-20%281%3A1%292024
- The Riis Complexity Gap for QBF ResolutionBeyersdorff, O., Clymo, J., Dantchev, S., & Martin, B. (2024). The Riis Complexity Gap for QBF Resolution. Journal on Satisfiability, Boolean Modeling and Computation, 15(1), 9-25. https://doi.org/10.3233/sat-231505
- The Complexity of L(p, q)-Edge-LabellingBerthe, G., Martin, B., Paulusma, D., & Smith, S. (2023). The Complexity of L(p, q)-Edge-Labelling. Algorithmica, 85(11), 3406-3429. https://doi.org/10.1007/s00453-023-01120-4
- Few induced disjoint paths for H-free graphsMartin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2023). Few induced disjoint paths for H-free graphs. Theoretical Computer Science, 939, 182-193. https://doi.org/10.1016/j.tcs.2022.10.024
- Induced Disjoint Paths and Connected Subgraphs for H-Free GraphsMartin, B., Paulusma, D., Smith, S., & van Leeuwen, E. J. (2023). Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs. Algorithmica, 85, 2580–2604. https://doi.org/10.1007/s00453-023-01109-z
- The complexity of quantified constraints: collapsibility, switchability and the algebraic formulationCarvalho, C., Madelaine, F., Martin, B., & Zhuk, D. (2023). The complexity of quantified constraints: collapsibility, switchability and the algebraic formulation. ACM Transactions on Computational Logic, 24(1), Article 5. https://doi.org/10.1145/3568397
- QCSP Monsters and the Demise of the Chen ConjectureZhuk, D., & Martin, B. (2022). QCSP Monsters and the Demise of the Chen Conjecture. Journal of the ACM, 69(5), Article 35. https://doi.org/10.1145/3563820
- Colouring generalized claw-free graphs and graphs of large girth: Bounding the diameterMartin, B., Paulusma, D., & Smith, S. (2022). Colouring generalized claw-free graphs and graphs of large girth: Bounding the diameter. Theoretical Computer Science, 931, 104-116. https://doi.org/10.1016/j.tcs.2022.07.034
- Partitioning H-free graphs of bounded diameterBrause, C., Golovach, P., Martin, B., Paulusma, D., & Smith, S. (2022). Partitioning H-free graphs of bounded diameter. Theoretical Computer Science, 930, 37-52. https://doi.org/10.1016/j.tcs.2022.07.009
- QCSP on reflexive tournamentsLarose, B., Martin, B., Markovic, P., Paulusma, D., Smith, S., & Zivny, S. (2022). QCSP on reflexive tournaments. ACM Transactions on Computational Logic, 23(3), Article 14. https://doi.org/10.1145/3508069
- Colouring graphs of bounded diameter in the absence of small cyclesMartin, B., Paulusma, D., & Smith, S. (2022). Colouring graphs of bounded diameter in the absence of small cycles. Discrete Applied Mathematics, 314, 150-161. https://doi.org/10.1016/j.dam.2022.02.026
- Hard problems that quickly become very easyMartin, B., Paulusma, D., & Smith, S. (2022). Hard problems that quickly become very easy. Information Processing Letters, 174. https://doi.org/10.1016/j.ipl.2021.106213
- The lattice and semigroup structure of multipermutationsCarvalho, C., & Martin, B. (2022). The lattice and semigroup structure of multipermutations. International Journal of Algebra and Computation, 32(2), 211-235. https://doi.org/10.1142/s0218196722500096
- Disjoint paths and connected subgraphs for H-free graphsKern, W., Martin, B., Paulusma, D., Smith, S., & van Leeuwen, E. (2022). Disjoint paths and connected subgraphs for H-free graphs. Theoretical Computer Science, 898, 59-68. https://doi.org/10.1016/j.tcs.2021.10.019
- Acyclic, Star, and Injective Colouring: Bounding the diameterBrause, C., Golovach, P., Martin, B., Ochem, P., Paulusma, D., & Smith, S. (2022). Acyclic, Star, and Injective Colouring: Bounding the diameter. Electronic Journal of Combinatorics, 29(2). https://doi.org/10.37236/10738
- Disconnected cuts in claw-free graphsMartin, B., Paulusma, D., & van Leeuwen, E. (2020). Disconnected cuts in claw-free graphs. Journal of Computer and System Sciences, 113, 60-75. https://doi.org/10.1016/j.jcss.2020.04.005
- Constraint satisfaction problems for reducts of homogeneous graphsBodirsky, M., Martin, B., Pinsker, M., & Pongracz, A. (2019). Constraint satisfaction problems for reducts of homogeneous graphs. SIAM Journal on Computing, 48(4), 1224-1264. https://doi.org/10.1137/16m1082974
- Surjective H-colouring: New hardness resultsGolovach, P., Johnson, M., Martin, B., Paulusma, D., & Stewart, A. (2019). Surjective H-colouring: New hardness results. Computability, 8(1), 27-42. https://doi.org/10.3233/com-180084
- Surjective H-Colouring over reflexive digraphsLarose, B., Martin, B., & Paulusma, D. (2018). Surjective H-Colouring over reflexive digraphs. ACM Transactions on Computation Theory, 11(1), Article 3. https://doi.org/10.1145/3282431
- On the Complexity of the Model Checking ProblemMadelaine, F. R., & Martin, B. D. (2018). On the Complexity of the Model Checking Problem. SIAM Journal on Computing, 47(3), 769-797. https://doi.org/10.1137/140965715
- Discrete Temporal Constraint Satisfaction ProblemsBodirsky, M., Martin, B., & Mottet, A. (2018). Discrete Temporal Constraint Satisfaction Problems. Journal of the Association for Computing Machinery., 65(2), Article 9. https://doi.org/10.1145/3154832
- Circuit Satisfiability and Constraint Satisfaction around Skolem ArithmeticGlaßer, C., Jonsson, P., & Martin, B. (2017). Circuit Satisfiability and Constraint Satisfaction around Skolem Arithmetic. Theoretical Computer Science, 703, 18-36. https://doi.org/10.1016/j.tcs.2017.08.025
- The packing chromatic number of the infinite square lattice is between 13 and 15Martin, B., Raimondi, F., Chen, T., & Martin, J. (2017). The packing chromatic number of the infinite square lattice is between 13 and 15. Discrete Applied Mathematics, 225, 136-142. https://doi.org/10.1016/j.dam.2017.03.013
- Quantified Constraint Satisfaction Problem on semicomplete digraphsĐapić, P., Marković, P., & Martin, B. (2017). Quantified Constraint Satisfaction Problem on semicomplete digraphs. ACM Transactions on Computational Logic, 18(1), Article 2. https://doi.org/10.1145/3007899
- The complexity of counting quantifiers on equality languagesMartin, B., Pongrácz, A., & Wrona, M. (2017). The complexity of counting quantifiers on equality languages. Theoretical Computer Science, 670, 56-67. https://doi.org/10.1016/j.tcs.2017.01.022
- The computational complexity of disconnected cut and 2K2-partitionMartin, B., & Paulusma, D. (2015). The computational complexity of disconnected cut and 2K2-partition. Journal of Combinatorial Theory, Series B, 111, 17-37. https://doi.org/10.1016/j.jctb.2014.09.002
- Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof systemsDantchev, S., & Martin, B. (2013). Rank complexity gap for Lovász-Schrijver and Sherali-Adams proof systems. Computational Complexity, 22(1), 191-213. https://doi.org/10.1007/s00037-012-0049-1
- Parameterized Proof ComplexityDantchev, S., Martin, B., & Szeider, S. (2011). Parameterized Proof Complexity. Computational Complexity, 20(1), 51-85. https://doi.org/10.1007/s00037-010-0001-1
Supervision students
Tala Eagling-Vose
Postgraduate Student
Yiming Qiu
Postgraduate Student