Staff profile
Overview
https://apps.dur.ac.uk/biography/image/1933
Affiliation | Telephone |
---|---|
Professor in the Department of Mathematical Sciences |
Research interests
- Algebraic Number Theory
- Arithmetic of automorphic forms
- Error-Correcting Codes
Publications
Chapter in book
- On Special L-Values Attached to Siegel Modular FormsBouganis, A. (2014). On Special L-Values Attached to Siegel Modular Forms. In A. Bouganis & O. Venjakob (Eds.), Iwasawa theory 2012 : state of the art and recent advances. (pp. 135-176). Springer Verlag. https://doi.org/10.1007/978-3-642-55245-8_4
- A geometric view of decoding AG codesBouganis, A., & Coles, D. (2003). A geometric view of decoding AG codes. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (pp. 180-190). https://doi.org/10.1007/3-540-44828-4_20
- Error Correcting Codes over Algebraic SurfacesBouganis, A. (2003). Error Correcting Codes over Algebraic Surfaces. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. (pp. 169-179). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44828-4_19
Conference Paper
- p-adic measures for Hermitian modular forms and the Rankin–Selberg methodBouganis, A., Loeffler, D., & Zerbes, S. (2017). p-adic measures for Hermitian modular forms and the Rankin–Selberg method. In D. Loeffler & S. Zerbes (Eds.), Elliptic curves, modular forms and Iwasawa theory : in honour of John H. Coates’ 70th Birthday, Cambridge, UK, March 2015. (pp. 33-86). Springer Verlag. https://doi.org/10.1007/978-3-319-45032-2_2
- Implementation Issues and Experimental Study of a Wavelength Routing Algorithm for Irregular All-Optical NetworksBouganis, A., Caragiannis, I., & Kaklamanis, C. (Eds.). (1999). Implementation Issues and Experimental Study of a Wavelength Routing Algorithm for Irregular All-Optical Networks. In Algorithm Engineering.
Edited book
- Iwasawa Theory 2012: State of the Art and Recent AdvancesBouganis, A., & Venjakob, O. (Eds.). (2014). Iwasawa Theory 2012: State of the Art and Recent Advances. Springer Verlag. https://doi.org/10.1007/978-3-642-55245-8
Journal Article
- On a Rankin-Selberg integral of three Hermitian cusp formsBouganis, A., & Psyroukis, R. (in press). On a Rankin-Selberg integral of three Hermitian cusp forms. Annales mathématiques Du Québec.
- The MacWilliams Identity for the Skew Rank MetricFriedlander, I., Bouganis, A., & Gadouleau, M. (2025). The MacWilliams Identity for the Skew Rank Metric. Advances in Mathematics of Communications, 19(1), 140-179. https://doi.org/10.3934/amc.2023045
- Algebraicity of L-values attached to Quaternionic Modular FormsBouganis, A., & Jin, Y. (2024). Algebraicity of L-values attached to Quaternionic Modular Forms. Canadian Journal of Mathematics, 76(2), 638-679. https://doi.org/10.4153/s0008414x23000184
- Algebraicity of special L-values attached to Siegel-Jacobi modular formsBouganis, A., & Marzec, J. (2021). Algebraicity of special L-values attached to Siegel-Jacobi modular forms. Manuscripta Mathematica, 166(3-4), 359-402. https://doi.org/10.1007/s00229-020-01243-w
- On the Rankin-Selberg method for vector valued Siegel modular formsBouganis, A., & Mercuri, S. (2021). On the Rankin-Selberg method for vector valued Siegel modular forms. International Journal of Number Theory, 17(5), 1207-1242. https://doi.org/10.1142/s1793042121500330
- On the standard L-function attached to quaternionic modular formsBouganis, A. (2021). On the standard L-function attached to quaternionic modular forms. Journal of Number Theory, 222, 293-345. https://doi.org/10.1016/j.jnt.2020.10.024
- On the analytic properties of the standard L-function attached to Siegel-Jacobi modular formsBouganis, A., & Marzec, J. (2019). On the analytic properties of the standard L-function attached to Siegel-Jacobi modular forms. Documenta Mathematica, 24, 2613-2684. https://doi.org/10.25537/dm.2019v24.2613-2684
- On special L-values attached to metaplectic modular formsBouganis, A. (2018). On special L-values attached to metaplectic modular forms. Mathematische Zeitschrift, 3-4, 725-740. https://doi.org/10.1007/s00209-017-1909-9
- On the algebraicity of special L-values of Hermitian modular formsBouganis, A. (2015). On the algebraicity of special L-values of Hermitian modular forms. Documenta Mathematica, 20, 1293-1329.
- Non-abelian p-adic L-functions and Eisenstein series of unitary groups -The CM methodBouganis, A. (2014). Non-abelian p-adic L-functions and Eisenstein series of unitary groups -The CM method. Annales De l’Institut Fourier, 64(2), 793-891. https://doi.org/10.5802/aif.2866
- The Möbius–Wall congruences for p-adic L-functions of CM elliptic curvesBouganis, A. (2014). The Möbius–Wall congruences for p-adic L-functions of CM elliptic curves. Mathematical Proceedings of the Cambridge Philosophical Society, 156(01), 183-192. https://doi.org/10.1017/s0305004113000625
- Non-abelian congruences between special values of L-functions of elliptic curves; the CM caseBouganis, A. (2011). Non-abelian congruences between special values of L-functions of elliptic curves; the CM case. International Journal of Number Theory, 07(07), 1883-1934. https://doi.org/10.1142/s179304211100468x
- Special values of L-functions and false Tate curve extensionsBouganis, A. (2010). Special values of L-functions and false Tate curve extensions. Journal of the London Mathematical Society, 82(3), 596-620. https://doi.org/10.1112/jlms/jdq041
- On the non-commutative Main Conjecture for elliptic curves with Complex MultiplicationBouganis, A., & Venjakob, O. (2010). On the non-commutative Main Conjecture for elliptic curves with Complex Multiplication. Asian Journal of Mathematics, 14(3), 385-416. https://doi.org/10.4310/ajm.2010.v14.n3.a6
- Algebraicity of L-values for elliptic curves in a false Tate curve towerBouganis, A., & Dokchitser, V. (2007). Algebraicity of L-values for elliptic curves in a false Tate curve tower. Mathematical Proceedings of the Cambridge Philosophical Society, 142(2), 193-204. https://doi.org/10.1017/s030500410600987x
Report
- Non abelian p-adic L-functions and Eisenstein series of unitary groupsBouganis, A. (2011). Non abelian p-adic L-functions and Eisenstein series of unitary groups. https://doi.org/10.4171/owr/2011/31
Supervision students
Rafail Psyroukis
3P