
crystal module of libcmatrix
(experimental version)

This code provides a way to generate Hamiltonians and spin operators for spin systems
with permutation symmetry, in particular resulting from translational symmetry.

Existing libcmatrix functions can be used to calculate operators in the conventional
Zeeman eigenbasis that can then be block-diagonalised by unitary transformations by matrices
of the form 


1 1 1 . . .

1 e2πi/n e4πi/n . . .
...

...
. . .


 (1)

where n is the number of states in a set linked by permutation. n is necessarily a factor of
N—the number of spins being permuted. This approach is adequate for small problems, but
is unsuited to large problems. Most importantly, it doesn’t allow larger spin systems to be
studied.

A better solution is to calculate the spin operators etc. directly in the symmetrised basis.
The resulting matrices are smaller by a factor of ∼ N , allowing for much more efficient
calculation (by a factor of N2) for a given N , or larger problems to be solved. Although only
an extra log2 N spin-1/2 spins can be added, the efficiency savings do make calculations on
large (say > 10) spins a realistic possibility.

There are limitations to the current implementation:

• Limited to spin-1/2. Extension to other spin quantum numbers or mixed spin systems
would not be too difficult, but is of relatively little interest. Large spin systems are only
relevant to strongly coupled systems, which is rarely an issue outside of spin-1/2 NMR.
The existing libcmatrix functions can be used here in any case.

• Limited to cyclic permutations of all spins, corresponding to one-dimensional transla-
tional symmetry (with periodic boundary). The restriction to one dimension of transla-
tional symmetry is a major one. Adding additional point group symmetries e.g. mirror
planes, is not particularly useful since additional block diagonalisation is restricted to
“special” values of the translational eigenvalue, k, notably k = 0. Adding “independent”
symmetries such as additional translational axes would be useful. This would require
some major addition to the code (effectively all the functions would take on forms that
handled two, three etc. k eigenvalues), but is not impossible. Unfortunately the size of
problem that could be considered is small, even for just 2 dimensions, and may not be
sufficient to be convincing.

• Only one level of “mz blocking” is supported. Under free precession, mz is a good
quantum number for each nucleus type (high-field approximation). In this case, blocking
is limited to the total mz, or to one nucleus type.

• Although the functions are intended to resemble existing functions closely, a perfect
match (e.g. having a periodicspin system that “looked” like a spin system) is impos-
sible. Code that uses these functions will always be signficantly more involved.

1

1 Setting up the problem

Two data objects are declared in crystal.h; CrystalSpec “specifies” the symmetry by declar-
ing which spin states are related by symmetry. Adding different permutation symmetries other
than 1D translational is a matter of generating the correct CrystalSpec, but is still restricted
to a single “eigenvalue”. CrystalSystem then uses the information from a CrystalSpec object
to create spin operators. A CrystalSpec is initialised using

CrystalSpec(spinhalf system sys,N,bool mzblock,neigs) creates the “symmetry specifi-
cation” for N cells of a given system of spin-1/2 spins. The mzblock flag should be true

if the states will be blocked by mz quantum number i.e. free-precession problems, or
not. neigs is the number of “active” eigenvalues; typical values are N (also the default if
omitted), or (N + 1)/2 which corresponds to positive values of k only (the translational
eigenstates are numbered 0 to N−1 where N−1 corresponds to k = −2π/N etc.). Note
that the optional mz blocking is via the total mz quantum number which will not be
appropriate for all heteronuclear problems.

CrystalSpec(spinhalf system sys,N,char* label,neigs) allows a system to be blocked by
mz of a chosen nucleus e.g. "13C" etc. This is necessary if mz is only a good quantum
number for one set of spins in a heteronuclear system.

k = 0 (0) k = 0 (0)

k = 2π /5 (1)

k = 4π /5 (2)

k = –4π /5 (3)

k = –2π /5 (4)

k = – π (2)

k = π / 2 (1)

k = 3 π / 2 (3)

N = 4 N = 5

As can be seen in the diagram above, the eigenvalues can be divided into “general” values
of k which occur in pairs (k and −k) and “special” values k = 0 plus k = π if N is even.
If the original Hamiltonian is symmetric (i.e. purely real), then Hk = H−k. In favourable
cases, the evolution can then be calculated using only the postive values of k (remembering
to double the weighting of signals from general k), halving the calculation time for large N .
This relationship breaks down for sample spinning; presumably because the directionality of
the rotation breaks the relationship between k and −k. There may also be some possible
speedups using the relations between k and k + π (N even only).

At the special values of k, Hk is real for real starting Hamiltonians (at general values of k

the symmetrised Hamiltonian is necessarily complex, albeit hermitian). Since operations such

2

as diagonalisation are typically a factor of 3 faster for purely real matrices, this is a useful
efficiency gain, albeit one that becomes less important as N increases.

Although the contents of CrystalSpec are generally only accessible to CrystalSystem,
there are a couple of member functions that can be used to interrogate the object:

List<size t> permutation vectorH() returns the permutation that “translates” states by
one unit cell.

ListList<state t> linkedstates() returns the states broken down into sets linked by the
(translation) symmetry.

The convention j = Mc + j′ is used to relate the “spatial” definition of a spin in terms of
unit cell number, c, and index within the cell, j′ to spin index within the spin system, j′ (the
spin system is always “flat”). The function cell to spin(M,c,j′) should be used to return
j for a given cell and spin index.

Most NMR parameters are defined over the M spins in the unit cell. Dipolar couplings,
however, are defined between the couplings within cell 0 and between cell 0 and the other cells.
The translational symmetry dictates that the couplings between cells c1 and c2, for example,
are identical to those between cell 0 and cell c2− c1. The coupling network must be cyclic, so
cell N − 1 can be considered as cell −1 etc.

2 Using the CrystalSystem object

The CrystalSystem is initialised from a CrystalSpec:

CrystalSystem(CrystalSpec defin) creates a CrystalSpec object for the complete space of
defin (no mz blocking).

CrystalSystem(CrystalSpec defin, bra mz, ket mz) creates a CrystalSpec object span-
ning a given coherence block, specified in terms of the mz values of bra and ket sub-
spaces. A Failed exception thrown if the CrystalSpec does not use mz blocking.

Once the object is defined, it can then be used to generate spin operators. Its use dif-
fers from typical spin-operator generators such as spin system and spinhalf system in the
following ways:

• Rather than return a single matrix, most functions return the complete manifold for the
k states under consideration (as set up in the CrystalSpec). This is the most efficient
way to generate the spin operators, but other functions allow operators to be calculated
for specific values of k, which is useful if memory is tight.

• Special attention is required when there are less than two states in the relevant k sub-
space. In normal calculations, these cases are generally obvious and easily accounted
for. In periodic calculations using mz blocking, however, small subspaces occur quite
frequently and it is useful to handle them efficiently. For example, the single state of
maximum (or minimum) mz generates trivially one state of k = 0 only.

3

• The homonuclear dipolar coupling Hamiltonian requires special attention. Normally
this is constructed by summing product operator expressions for all the spin pairs. This
is not practical for large (or even medium) sized problems. Instead special functions
construct the symmetrised dipolar coupling Hamiltonian from a specification of the
coupling network. The other spin Hamiltonians do not require special treatment and
can be constructed from spin operators relatively efficiently.

The simple spin operator functions are

I(List<cmatrix>&, n, op) calculates the symmetrised operator, where n is the spin index
0 to MN − 1 (although only the index modulo N is significant), and op is ’x’, ’y’ etc.
The destination is a list of complex matrices, where matrix 0 corresponds to k = 0 etc.
If a particular k value is not represented in the selected sub-space, the corresponding
matrix will be “undefined”. Sub-spaces of size 1 are not treated specially.

I(cmatrix&,n,op,k) returns the spin operator for the specified k. The function above should
be used whenever all the eigenvalue blocks are needed; this function is useful for large
problems where there is insufficient memory to work with all the k states at the same
time.

F(List<cmatrix>&, op) calculates a symmetrised sum operator (over all spins).

F(List<cmatrix>&, char* label,op) restricts the summation to a particular nucleus type.

F(cmatrix&, op, k) and F(cmatrix&, char* label, op, k) calculate a symmetrised sum
operators for a given k eigenvalue.

ListList<double> diag Iz(n) returns a z operator in “diagonal form”. The result is a
ListList rather than the less efficient List< List<double> >. result(0), for exam-
ple, is a BaseList<double> corresponding to k = 0.

There are also more basic mla functions that can be used to accumulate (scaled) spin op-
erators efficiently. N.B. The spin operator functions use temporary workspace within the
CrystalSystem object, hence a multi-threaded calculation should not share CrystalSystem

objects, but rather each thread should use its own (the overhead is tiny).
Because the z operators can be stored compactly, it makes sense to calculate these once

at the start of the calculation. Full spin operators are generally too large to be kept around
and must be generated as needed.

The following functions calculate symmetrised (homonuclear) dipolar Hamiltonians. In
static problems, the coupling network is specified by a M ×MN rmatrix d, where dij is the
dipolar coupling between spin i of unit cell“zero” and spin j = Mc + j′ (c is the unit cell, j′

is the index within the unit cell). Note that the coupling network defined by d must be cyclic
(as explained above). Couplings that are identically zero are ignored.

In spinning problems, it is necessary to provide a rank 2 tensor (as a space T) to define
the strength and orientation of the dipolar interaction. Rather than return a List<cmatrix>,
the functions create a List< Tensor<cmatrix> > i.e. for each value of k, the Hamiltonian is
defined in terms of components H

(l)
m which transform as rank l spherical tensors (l is always 2).

4

Note that the functions also take the d matrix in addition to the spatial tensor information,
where the dij are just used to determine whether a particular interaction is to be included or
not.

sym Hdipolar(List<cmatrix>& H, List<double>& h, rmatrix d) creates the symmetrised
dipolar coupling Hamiltonian defined by coupling network d. If the coupling is heteronu-
clear (as defined by the initial spinhalf system), only the secular components of the
dipolar Hamiltonian are used. If the k block contains a single state, the symmetrised
element is stored in h(k) of the h vector and the corresponding H matrix will be unde-
fined.

sym Hdipolar(cmatrix& H, double& h, d, k) stores the dipolar Hamiltonian for a par-
ticular k value in H or h. This function is for large problems where memory is insufficient
to handle all k values at the same time.

double sym Hdipolar element(d) handles the special case where the Hilbert space contains
a single state (i.e. rows() is 1). It returns the single element of the dipolar Hamiltonian.

sym Hdipolar(List< Tensor<cmatrix> >& H, List<space T>& h,d, Matrix<space T> D)

calculates the Fourier components H l
m of the dipolar Hamiltonian under spinning1.

Single-element k blocks are stored in the simple space T, h.

sym Hdipolar(Tensor<cmatrix>& H, space T& h,d,D,k) calculates the Fourier compo-
nents for a single value of k.

complex sym Hdipolar element(d,D,k) return the single element of the dipolar Hamilto-
nian for the special case of a Hilbert space consisting of a single state.

Other member functions of CrystalSystem

isdiagonal() returns true if the Hilbert space is diagonal (always true if no mz blocking).

rows() & cols() return the dimensions of the Hilbert space.

rows(k) & cols(k) return the dimensions of a particular eigenvalue block of the symmetrised
space.

3 How it works

The mathematics of the symmetrisation is essentially limited to Equation (1). The complica-
tions lie in the book-keeping of combining the right states and putting the result in the right
place. The spin operator generating functions use a CrystalSystem iterator to iterate over
each set of symmetry-linked states, generating elements of the symmetrised operators. For
instance, if sets i and j both contain N states, the N × N block of the original operator is
first calculated and then transformed (by the symmetrise internal functions) to generate a

1By default, magic angle spinning is assumed for the sake of efficiency, but this can be easily changed

5

diagonal vector containing N elements corresponding to the N values of k. These are then
placed into the i, j elements of the output matrix blocks (by the place functions). Things
are complicated somewhat by the presence (for non-prime N) of sets that contain less than
N states, but this is essentially book-keeping.

Various special cases are considered to make the whole thing go faster:

• Diagonal spin operators: only diagonal i, i blocks need be considered and the maths can
be further simplified.

• For simple spin operators, it is more efficient to calculate the symmetrised matrix ele-
ments directly rather than transform a fairly sparse matrix.

• In the dipolar coupling Hamiltonian, it is not necessary to consider all the MN(MN +
1)/2 couplings. The symmetry allows us to consider just the couplings from (and within)
cell 0 (∼ M2N) and simply multiply the symmetrised Hamiltonian by N .

• k = 0 can be handled specially. If the original matrix is real, the k = 0 block is also
real. In this implementation, the results are always stored in complex matrices which
need to be turned into real versions before functions such as symmetric eigensystem

can be used. The is somewhat wasteful, but the wastage is O(n2) compared to O(n3)
for the major time-takers.

Profiling a program that uses crystal.h shows the vast majority of the time is spent in
diagonalisation, matrix multiplication etc., i.e. the overhead of symmetrisation is not signifi-
cant.

6

	Setting up the problem
	Using the CrystalSystem object
	How it works

