

Mathematics at Durham

Open Days 2022

Why study Maths At **Durham University?**

- Because you enjoy mathematics
- Because you will be trained in logical thinking, analysis etc. •
- Because you will get a good job •
- the feel of the place...

League Tables, Reputation, Personal Recommendation, flexibility of course,

The Department - Facts and Figures

Academic Staff

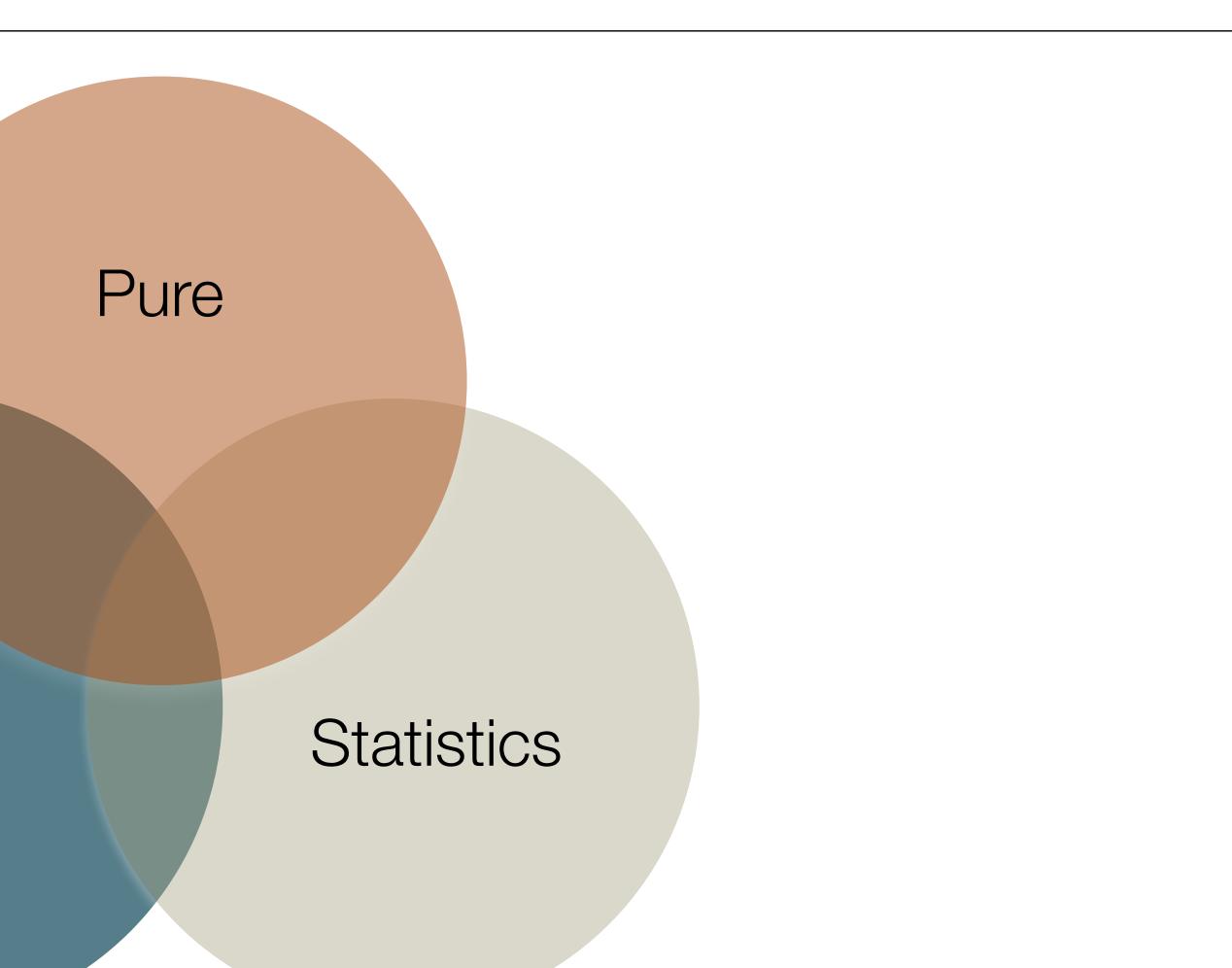
- 89 permanent faculty
- 6 temporary lecturers

Research Staff

18 postdoctoral researchers/fellows

Postgraduate Students

• 52 PhD students


• 40 MSc students

The Department - Research

Applied

The Department - Research

PURE

- Number Theory
- Topology
- Geometry
- Analysis of PDEs

· APPLIED

- Theoretical Physics (String Theory)
- MagnetoHydrodynamics
- Mathematical Biology

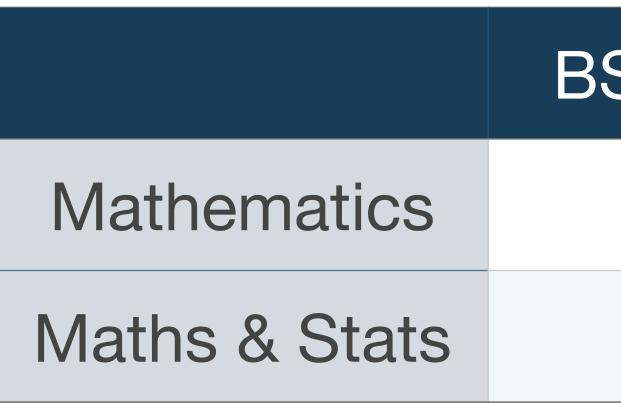
• **STATISTICS**

- **Bayesian Statistics**
- Probability •

Research-Led Teaching

Research feeds into the undergraduate programme:

- **Bayesian Statistics**)
- Final Year Projects

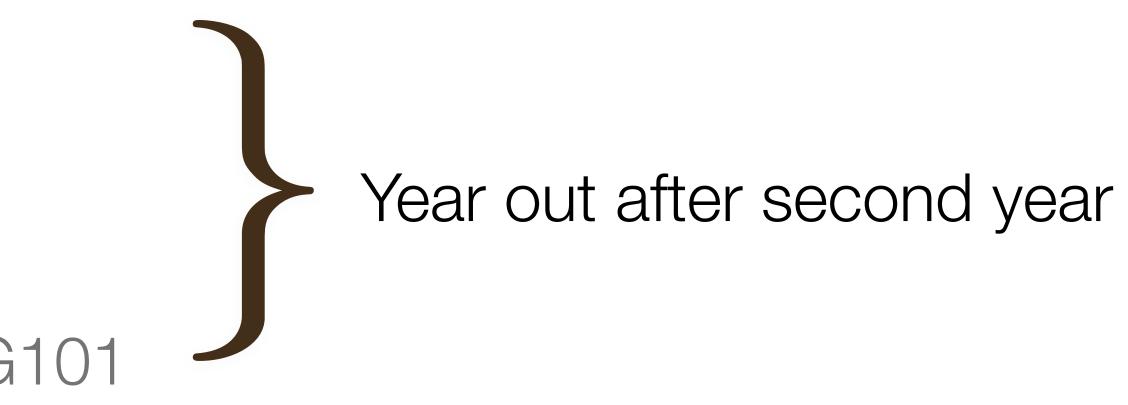

Third and Fourth Year Courses (Number Theory, Advanced Quantum Theory,

Undergraduates

- Around 300 Maths Undergraduates/Year
- High average UCAS entry tariff (3rd-5th nationally)
- 80% State School/20% Independent School
- 30% Female 70% Male
- 10-15% International 85-90% UK

Entry Degrees

- First year of programmes identical
- Split between G100/G103 is approximately 50:50

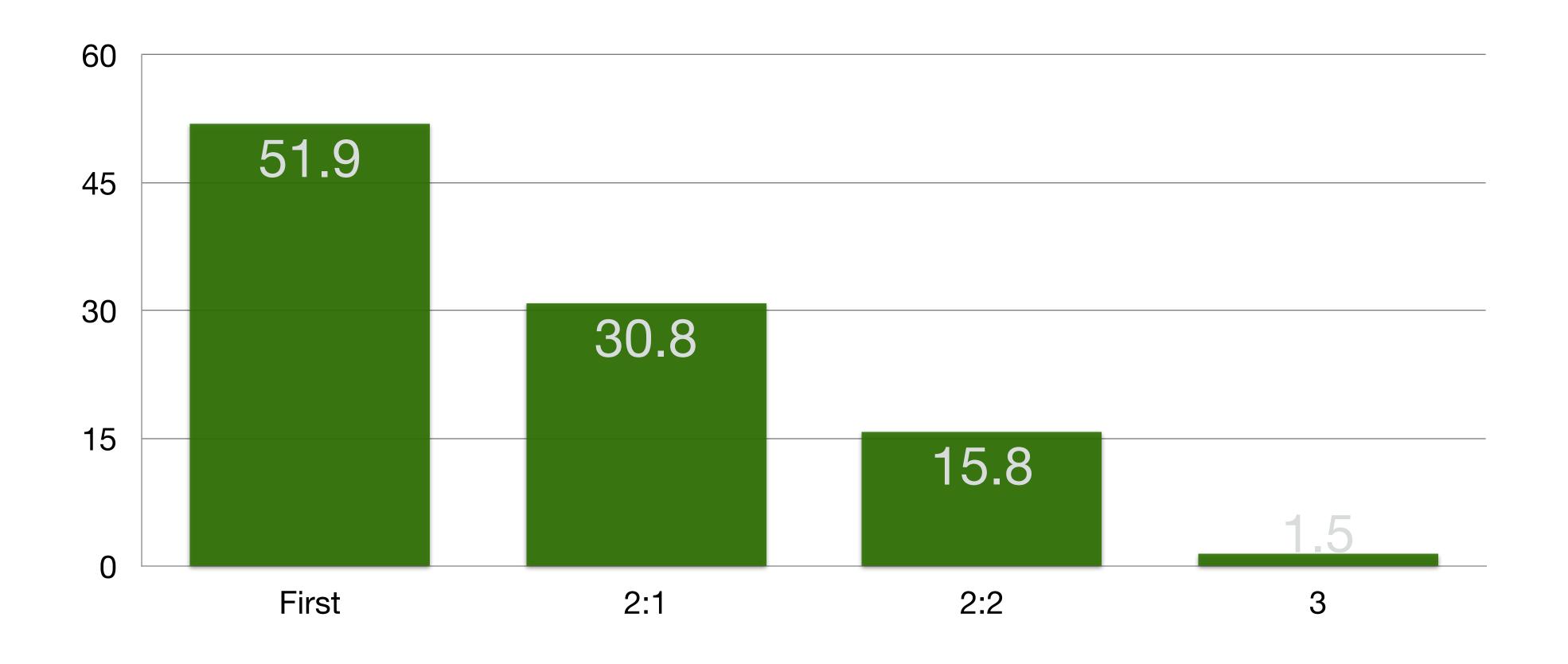

Sc (3 Year)	MMath (4 Year)
G100	G103
G111	G114

• Possibility to transfer from one to the other up to the end of year 2

Other Degrees offered by Maths

- Year Abroad Degrees
- Placement Degrees
- MMATH (Year Abroad) G101
- Typically transfer in at the end of Year 1
- All involve spending Year 3 away from Durham

• May need language requirement for study at a European University


Structure - Modules

- 6 Modules per year
- 1st Year Pass/Fail (40%=Pass, Resit opportunity)
- BSc in Ratio 2:3 for Year 2/3
- MMath in Ratio 2:3:4 for Year 2/3/4

• Final Degree Classification depends on results from Years 2, 3, (4 if MMath)

Durham Maths Degrees

Modules - First Year

Five Core Modules:

Calculus 1 Analysis 1 Linear Algebra 1 Programming and Dynamics Probability & Statistics

One Elective Module:

Discrete Maths

Modules from other Departments

Modules - Second Year (Mathematics)

Two Core Modules:

Analysis in Many Variables Complex Analysis

4 Elective Modules:

- Algebra
- Mathematical Physics
- Numerical Analysis
- Statistical Inference •
- Elementary Number Theory
- •
- Geometric Topology Special Relativity & Electromagnetism Mathematical Modelling
- •
- Markov Chains •
- Probability •
- Data Science and Statistical Computing
- Statistical Modelling •

Modules - Second Year (Maths & Stats)

Core Modules:

- Analysis in Many Variables
- Statistical Inference
- Statistical Modelling
- Data Science and Statistical Computing

Elective Modules:

- Algebra
- Complex Analysis
- Mathematical Physics
- Numerical Analysis •
- Elementary Number Theory
- Geometric Topology
 Special Relativity & Electromagnetism
 Mathematical Modelling
- Markov Chains
- Probability

Modules Third and Fourth Year

Pure

Analysis 3 Galois Theory Topology Representation Theory Algebraic Geometry Differential Geometry Algebraic Topology Number Theory Riemannian Geometry Geometry Codes & Cryptography Ergodic Theory & Dynamics Functional Analysis & Appl.

Applied

Quantum Mechanics Quantum Information Solitons General Relativity Continuum Mechanics Partial Diff Eqns Mathematical Biology Geometry of Mathematical Physics Dynamical Systems Numerical Diff Eqns Adv Quantum Theory Statistical Mechanics Maths Teaching Topics in Algebra and Geometry Topics in Applied Maths

Statistics

Adv. Stat Modelling **Bayesian Computation** and Modelling Decision Theory Machine Learning and Neural Networks Mathematical Finance Probability 3 Stochastic Processes **Spatio-Temporal Statistics** Deep Learning and AI Discrete & Continuous Probability High Dimensional Data Analysis **Non-Parametric Statistics Object-Oriented Statistics Robust Bayesian Analysis** Topics in Probability Uncertainty Quantification

Projects

- Every final year student does a double module project
- Highly commended by external examiners
- A research experience
- Vast choice informed by research interests of staff...

Projects - 3rd Year Titles 2021/22

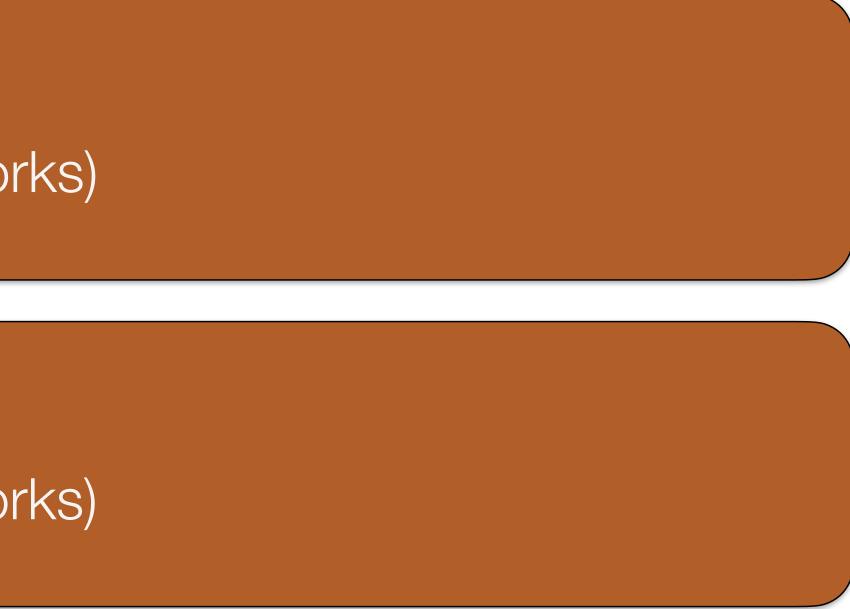
	Applications of Lebesgue and Hausdorff measures	Games
	Approximation Theory	Geome
	A relativistic perspective	Graph
	Bayesian Emulation and History Matching for Complex Models	Graph
	Black Holes	Infinite
	Bootstrap	Interst
	Commutators in rings	Introd
	Computing Dynamics	Introd
	Contact geometry and intergalactic jets	Introd Schott
	Convex Functions and Convex Analysis	Ising N
	Cosmology	Kejeok
	Density estimation	Low di
	Einstein's theory of General Relativity	Magne
	Elliptic Curves	Marke
	EM and stochastic EM algorithms for parameter estimation	Marko
	Embedding random walks in a Brownian motion	Marko
	Fermions: The sign that matters	Mathe
	Fourier series and applications	Mathe
1	Fourier Theory of finite groups and applications Fractal Geometry	Matrix Model
	Fractals, Substitution tilings and Lindenmayer systems	Multip
	Free quantum fields	Non-a

s and Codes	Path Integral QM
etry of Quantum States	Points on a sphere
Polynomials	Primes, Polynomials and Polynomial Time
Theory	Pursuit problems
esimals and Internal Set Theory	Quasi-Exactly Solvable Systems
tellar	Relativistic Field Theories of Massless Particl
uction to additive combinatorics	Ridge Regression
uction to neural networks	Sampling
uction to thermodynamic formalism: dimension theory of tky groups	Set theory
Nodel and related models	Sheepdog trials: collective motion in 2D
keoqjn jeejqxk vl qazgevhajgcz	Singularity Theory
imensional dynamics	Some economical models via optimal mass t
etic Equilibria	Statistical Physics: Phase Transitions and Sim
et Segmentation using Unsupervised Machine Learning	Statistical techniques and models for the and functional data
ov Chain Mixing Times	Statistics, Machine Learning, and Data Scien
ov Random Fields and Images	Symmetries of Surfaces
ematical aspects of crystallography	The Banach-Tarski Paradox
ematical modelling of convection in stars and planets	The mathematics of Origami and Kirigami
k models	The numerical range of a matrix
Is of Axion Inflation	Time series modelling
ole zeta values	Tropical Geometry
rchimedian analysis	

transport nulations nalysis of

Projects - 4th Year Titles 2021/22

Additive problems in Number Theory	How on Earth to define curvature on non-smooth spaces?	Random parking
Advances in Bayesian Emulation and History Matching for	Introduction to Conformal Field Theory	Regularisation approaches for high dimensional data
Algebraic Curves and Error-Correcting Codes	Local class field theory: extensions of local fields with	Representations of symmetric groups
Application of neural networks to visual tasks	Loewner Evolutions	Self-avoiding Walk
Arithmetic Dynamics	Machine learning through the lenses of Optimal Transport	Shape Modelling
Beyond mean regression	Magnetic monopoles in hyperbolic space	Solving the Riemann problem
Beyond Normal	Mathematical Modelling of Musical Instruments	Spatial Population Dynamics in Changing Ecosystems
Black Holes	Matrix models	Spatio-temporal pattern formation in nature.
Change point detection	Measure Theory Beyond the Real Line	Spectral pollution
Codes and Lattices	MHD Waves in the Solar Atmosphere and Wind	Strings and Gravity
Computational Topology	Minimal symbolic dynamics	Survival Analysis
Conformal Field Theory	Modelling the spread of a coronavirus	Symmetries of Riemannian manifolds
Ensemble Learning	Models of traffic flow	The Fractional Quantum Hall Effect: from Electrons to
Evaluate Probabilistic Forecast via Scoring Rules	Nonlinear Expectations	The Geometry of Rearrangements
Exact Tests in Analysis of Categorical Data	On the statistical analysis of functional data: methods,	The Polynomial Method
Further Topics in Decision Theory	Patterns via Topology	The Probabilistic Method
Gaming vicariously	Penalized Regression	The Standard Model
Gaussian Analysis	Percolation	The Weyr form and its applications to problems in al
Gaussian Process Regression of Computer Models of	Physics with machine learning	Topics in Analysis
Geometrical Aspects of Gauge theories	Piecewise linear manifolds	Topology and Physics
Geometric Applications of Heat Flow Analysis	Polylogarithms	Uncertainty quantification for data and models arising
Graphical Models for Multivariate Statistics	Quantum Field Theory in anti-de Sitter space	Vertex Operator Algebras
Group theory and Physics	Quantum Walks	
How do microorganisms swim?	Random Graphs	


How It's taught - Academic Year

MICHAELMAS (10 Weeks) (Lectures/Tutorials/Homeworks)

EPIPHANY (10 Weeks) (Lectures/Tutorials/Homeworks)

EASTER (9 Weeks) (2 weeks Revision/ 4 Weeks Exams /3 Weeks ...)

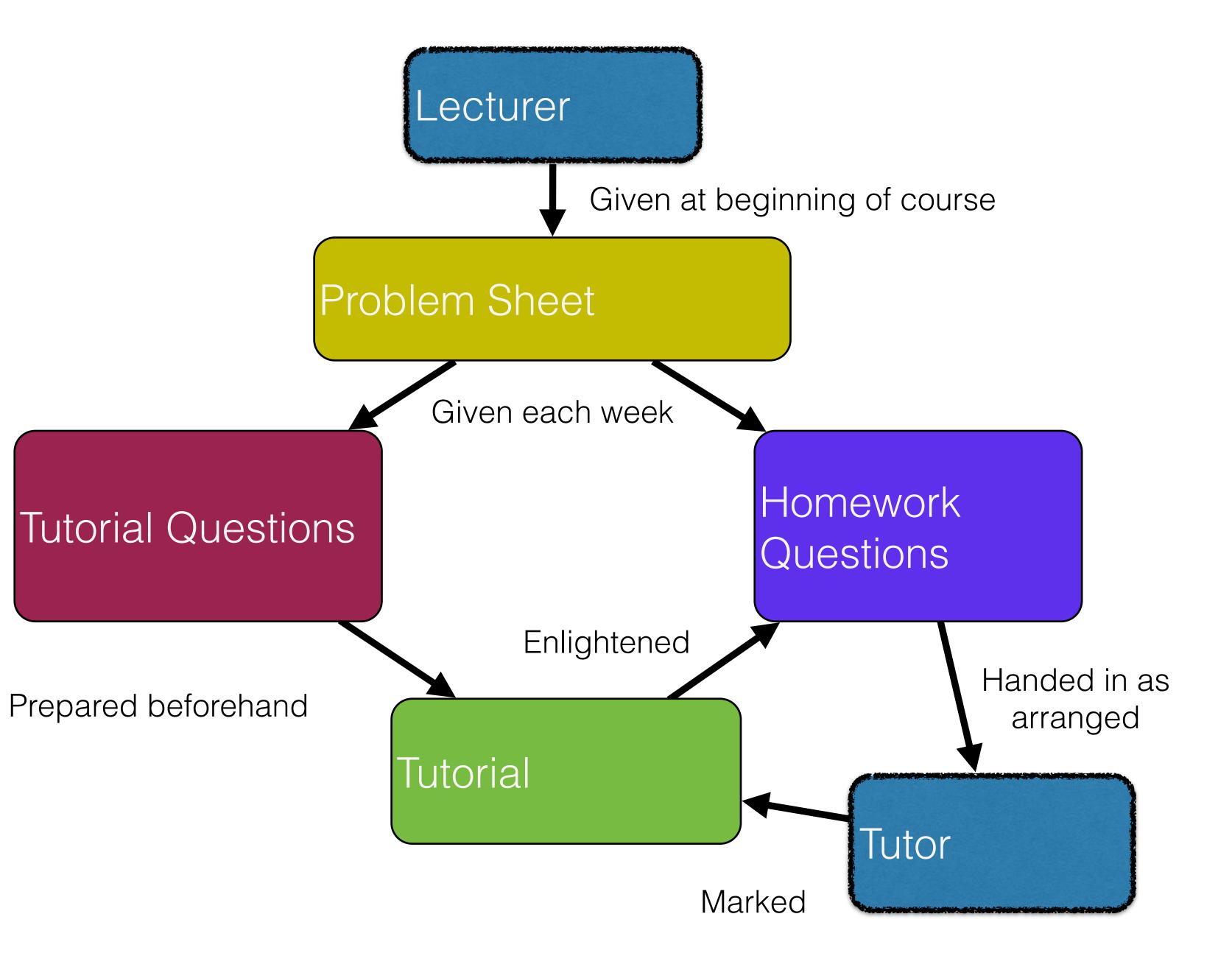
How it's Taught - Lectures

- Most courses are 40/50 lectures
- 50 minutes long
- 2/3 lectures per week
- Most popular style is "chalk and talk"

Tutorials

How It's Taught - Tutorials

- Interactive its about doing the Maths!
- In groups of about 12
- Given by Academic Staff/PhD students
- One per module/week to begin with
- Replaced gradually by problems classes
- Extra "Brush up your skills" tutorials


How It's Taught - Homeworks

- 3/4)
- Almost all are formative not summative
- many first year courses.
- We encourage you to work together

• Lecturer sets homeworks every week in years 1/2 (every fortnight in years

Use a mixture of written assessments and `electronic' assessments for

Contact Hours

Course	Lectures (Hrs/Wk)	Tutorials (Hrs/Wk)	Comp Class (Hrs/Wk)	Prob Class (Hrs Wk)			
Calculus	3	1					
Linear Algebra	3	1					
Analysis	2	1					
Programming	1		2				
Probability	2.5	0.5		0.5			
Discrete	2	1					
Total	13.5	4.5	2	0.5			

Grand Total = 20.5 (Michaelmas Term, assuming all Maths)

Applying

UCAS THE COMMON APPLICATION

Applying

- Oxbridge)
- The process of making offers continues until March (Even if you apply in October we may not be able to make a decision until March)

Apply via UCAS before January 25 2023 (or Oct 15 2022 if applying to

Standard Offer in Maths

- A*A* (Maths + Further Maths) + A •
- TMUA 6.5 + A*A (Maths + Further Maths) + A (or A*A*+B) • (TMUA 6.5 = MAT 55% = 2 in any STEP)
- We do not accept General Studies and Critical Thinking •
- Physics.
- Contextual offers

We have no preferences for third A: A-level History is as good as A-level

No Further maths?

- We prefer full A-level Further Maths •
- AS-level Further Maths is required •
 - Support Programme" (AMSP)
- Offer without A-level F maths:
 - TMUA 6.5 + A^* (Maths) + AA + a (in AS level Further Maths). •

if the A-level is not available at school, via the "Advanced Mathematics

Equivalent non A-level offers

- IB: TMUA 6.5 + 38 points including 766 with a 7 in Maths. •
- •
- Cambridge Pre-U: TMUA6.5 + D2(Maths)+ D3D3 (any others)
- Cambridge Pre-U: D2 (Maths)+ D2D3 (any others)

IB: 38 points + 776 with a 7 in Maths. All grades must be at higher level.

The TMUA test

- Southampton, Warwick
- •
- 2 x 75 minute papers in early November •
- cost reimbursed by TMUA

Used by Durham, Bath, Cambridge, Cardiff, Lancaster, LSE, Nottingham, Sheffield,

Run by CAAT (Cambridge Assessment Admissions Testing) who also run MAT/STEP

Details for 2022 but last year you needed to register by **October 15th** (cheaper by

October 1st) cost was £57 - school may pay or if on free school meals or similar scheme

The TMUA test

- Your score (on a scale from 1.0 to 9.0) will be released to you at end • November by CAAT
- •
- More details on CAAT webpages (just Google "TMUA test")

Pass mark for Durham (and Warwick) is 6.5 (entitles you to reduced offer) Good mark (>4.5) score will still increase your chances of a standard offer

Important Evidence:

- evidence
- initiative in taking your studies further.
- useful.

TMUA score: TMUA 6.5 for reduced offer, anything >4.5 counts as positive

Achieved and Predicted Grades: Predictions should at least meet our offer. **Personal Statement:** We look for motivation to study the programme, and

Reference: We expect very strong references. Quantitative evidence is most

Quality is more important than quantity. We don't focus on GCSE grades.