The Role of Industrial and Market Symbiosis in Stimulating CO₂ Emission Reductions

Tine Compernolle & Jacco Thijssen

Environmental challenges

- Many efforts to reduce CO2 emission could benefit from cooperation.
- → Taking supply chains and network structures into account (industrial symbiosis)
- \rightarrow Optimal timing to invest in a supply chain/network (real options)
- \rightarrow How to share profits (market symbiosis)

Literature review

- Real options theory and cooperative decision making
- → E. Lukas and A. Welling (2014). Timing and eco(nomic) efficiency of climate-friendly investments in supply chains. . <u>European Journal of Operational Research 233, 448-457</u>

- \odot A sequential bargaining game in a supply chain
- Bargaining over investment in a CO₂ reducing investment project
- \circ If a CO₂ emission reducing investment depends on the cooperation of a neighbor link in a supply chain, investment will occur later
- If all parties act cooperatively instead of negotiating sequentially, they should be able to agree and invest more early

Literature review

- Real options theory and cooperative decision making
- →Banerjee, S., Güçbilmez, U., Pawlina, G., **2014.** Optimal exercise of jointly held real options: A Nash bargaining approach with value diversion. <u>European Journal of Operational Research 239, 565-578</u>
- Two-stage decision game
- \circ 2 or more parties jointly hold a real option

○ If the timing decision precedes bargaining on sharing terms: single party's timing decision is socially efficient. Regardless of the financing policy and which firm makes the exercise decision.

 If the sharing rule is agreed before the exercise timing decision is made: the first-best solution can be attained only if a combination of a stake in the project and cash transfers is used.

Literature review

- Real options theory and cooperative decision making
- →Guthrie, Graeme, Intertemporal Decision-Making and the Nash Bargaining Solution (May 26, **2018**). Available at SSRN: https://ssrn.com/abstract=3185252

• Evaluates the NBS at each point in time in such a way that the partners' beliefs about the future are consistent with their future actions.

• The intertemporal bargaining problem is treated as a sequence of static bargaining problems.

Our contribution

• Real options theory and cooperative decision making

 \circ Two echelon supply chain

• Each player holds an individual investment option

• Option to create a joint venture

 \circ We take into account a firm's flexibility to invest on its own

$\begin{array}{c} \textbf{Case study} \\ \textbf{CO}_2 \, \textbf{enhanced oil recovery} \end{array}$

Upstream firm: CO₂ emitter

Waste flow: Q_u for which it pays a price P_u

$$dP_{U,t} = \alpha_U P_{U,t} dt + \sigma_U P_{U,t} dW_{U,t}$$

The upstream firm has the option to invest (sunk costs K_U) in a technology that abates the CO_2 emission. Its investment problem is formalized as follows:

$$V_U(P_U) = \mathbb{E}\left[-\int_0^\tau e^{-r\tau} Q_U P_{U,t} dt - e^{-r\tau} K_U\right]$$
$$= -\frac{Q_U P_U}{r - \alpha_U} + \sup_{\tau \in \mathcal{M}} \mathbb{E}\left[e^{-r\tau} \left(\frac{Q_U P_{U,\tau}}{r - \alpha_U} - K_U\right)\right]$$

Upstream firm: CO₂ emitter

The value of the upstream firm is

$$V_U(P_U) = \begin{cases} -\frac{Q_U P_U}{r - \alpha_U} + (\frac{P_U}{P_U^*})^{\beta_U} \left(\frac{Q_U P_U^*}{r - \alpha_U} - K_U\right) & \text{if } P_U < P_U^*, \\ -K_U & \text{if } P_U \ge P_U^*, \end{cases}$$

where

$$P_U^* = \frac{\beta_U}{\beta_U - 1} \frac{r - \alpha_U}{Q_U} K_U,$$

is the optimal investment trigger and $\beta_U > 1$ is the positive root of the quadratic equation

$$Q_U(\beta) \equiv \frac{1}{2}\sigma_U^2\beta(\beta-1) + \alpha_U\beta - r = 0.$$

Downstream firm: oil producer

The downstream firm has the option to invest in a technology (sunk costs K_D) that produces additional output for which it receives a price P_D , where

$$dP_{D,t} = \alpha_D P_{D,t} dt + \sigma_D P_{D,t} dW_{D,t},$$

with $E[dW_{U,t}dW_{D,t}]=\rho dt$. The downstream firm has the option to invest in a technology that produces the additional output. Its investment problem is formalized as follows:

$$V_D(P_D) = \mathbb{E}\left[\int_{\tau}^{\infty} e^{-rt} \left(Q_D P_{D,t} - rK_D\right) dt\right]$$
$$= \sup_{\tau \in \mathcal{M}} \mathbb{E}\left[e^{-r\tau} \left(\frac{Q_D P_{D,\tau}}{r - \alpha_D} - K_D\right)\right]$$

Downstream firm: oil producer

The value of the downstream firm is

$$V_D(P_D) = \begin{cases} \left(\frac{P_D}{P_D^*}\right)^{\beta_D} \left(\frac{Q_D P_D^*}{r - \alpha_D} - K_D\right) & \text{if } P_D < P_D^*, \\ -K_D & \text{if } P_D \ge P_D^*, \end{cases}$$

where

$$P_D^* = \frac{\beta_D}{\beta_D - 1} \frac{r - \alpha_D}{Q_D} K_D,$$

is the optimal investment trigger and $\beta_D > 1$ is the positive root of the quadratic equation

$$Q_D(\beta) \equiv \frac{1}{2}\sigma_D^2\beta(\beta-1) + \alpha_D\beta - r = 0.$$

Joint Venture

The downstream firm could use the waste flow of the upstream firm as an input to its production process. As a result, a cost saving is made:

 $K < K_U + K_D$.

The NPV for the joint venture is:

Joint Venture

The value function of JV is:

$$V_J(P_U, P_D) = \mathbb{E}\left[-\int_0^\tau e^{-r\tau} Q_U P_{U,t} dt - e^{-r\tau} F_J(P_{U,\tau}, P_{D,\tau})\right]$$
$$= -\frac{Q_U P_U}{r - \alpha_U} + \sup_{\tau \in \mathcal{M}} \mathbb{E}\left[e^{-r\tau} \left(F_J(P_{U,\tau}, P_{D,\tau}) + \frac{Q_U P_{U,\tau}}{r - \alpha_U}\right)\right].$$

No known analytical solution, but can be solved using finite difference method. However:

Proposition 1 There exists a non-increasing and continuous mapping $P_U \mapsto b(P_U)$ on $(0, P_U^*)$ that describes the boundary ∂C , i.e., for all $P_U \in (0, P_U^*)$ it holds that $(P_U, b(P_U)) \in \partial C$ and for all $(P_U, P_D) \in \partial D$ it holds that $P_D = b(P_U)$. In addition, the continuation region is convex. Finally, for all $P_U \in (0, x^*)$ it holds that $b(P_U) < P_D^*$.

Exercise Regions

Application

Application

Table 1Total cost calculation ofthe CCS investment in case theelectricity company operates as asingle investor

Description	Value	Unit
Capital expenditure	1040	Mln €
Operational expenditure	7.22	€/t CO ₂
CO ₂ transport and storage	14.97	€/t CO ₂
Quantity of CO_2 emitted (Q_U)	4.59	Mln t/y
Discount rate (r)	0.15	_
Total discounted cost CCS (K_U)	1719	Mln €

Application

See Compernolle et al. (2017) for further cost details

Table 2Total cost calculation ofthe EOR investment in case theoil company operates as a singleinvestor

Description	Value	Unit
Capital expenditure	1543	Mln €
Operational expenditure	37.70	€/bbl
CO ₂ purchase price	25.00	€/t CO ₂
Quantity of CO ₂ supplied	4.59	Mln t/y
Quantity of oil produced (Q_D)	8.25	Mln bbl/y
EOR operational period (T)	15	Years
Discount rate (r)	0.15	_
Total discounted cost EOR (K_D)	1924	Mln €

Exercise boundary

Fig. 5 Investment choice of the joint venture. Red area: region where the joint venture only invests in EOR; bleu area: region where the joint venture invests in both CCS and EOR; green area: region where the joint venture only invests in CCS

Likelihood of investment within 5 years

JV CCS only JV CCS+EOR JV EOR only JV no Inv -Stand alone investment in CCS

CO₂ Reduction over 50 years

Fig. 8 Average CO₂ emission reduction realized by the joint venture, for different values of σ_U , α_U , and $\zeta = \frac{K}{K_U + K_D}$

CO₂ Reduction

Fig. 10 Left panel: choice of the joint venture for $P_{U,0} = 35$ EUR/t. Right panel: average carbon emission reduction realized by the joint venture in case of positively and negatively correlated price processes and for increasing carbon price levels

Conclusions

- Cooperation between firms can lead investment in carbon reduction to
 - Taking place sooner and
 - Having a higher environmental impact
- As well as increasing firm value along the value chain.
- Can we have our cake and eat it?

