Measuring the Social Cost of Carbon under Uncertainty

Durham University

Christian Gollier
Toulouse School of Economics

$$
\text { July 19, } 2023
$$

Why do climate activists (and others) hate economists?

- Because we support climate policies that are too weak. We are short-termist, as the markets that we defend.
- Does utilitarianism impose short-termism?
- What is the optimal degree of long-termism? Choice of the discount rate?
- Why do we discount the future? Under certainty (Ramsey):
- Because we are inequality-averse and we believe in growth.
- With a growth rate of 2%, it is socially desirable to discount everything at a rate of 4%.
- But LT growth is deeply uncertain. Our DEU model provides arguments for smaller discount rate.
- What discount rate should be used to estimate the carbon price?
- What is the social cost of carbon under this deeply uncertain future?

Social Cost of Carbon in the U.S. for 2020

$\underbrace{52 \$ / t \mathrm{CO}_{2}}_{$| Obama |
| :---: |
| $\mathrm{DR}=3 \%$ |\(} \rightarrow \underbrace{1 \$ / t \mathrm{CO}_{2}}_{\substack{Trump

\mathrm{DR}=7 \%}} \rightarrow \underbrace{52 \$ / t \mathrm{CO}_{2}}_{\)| Biden |
| :---: |
| $\mathrm{DR}=3 \%$ |$} \rightarrow \underbrace{190 \$ / t \mathrm{CO}_{2}}_{$| EPA (2022) |
| :---: |
| DR $=2 \%$ |$}$

- Preferences under the veil of ignorance.
- Independence axiom: If one prefers X over Y, one also prefers X with probability p over Y with probability p.
- This implies the Discounted Expected Utility model:

$$
V_{0}=\sum_{t=0}^{T} e^{-\delta t} E_{0}\left[U\left(C_{t}\right)\right]
$$

- The concavity of U represents risk and inequality aversions, which are equivalent under the veil of ignorance.
- Constant Relative Risk/Inequality Aversion: $U\left(C_{t}\right)=\frac{C_{t}^{1-\gamma}}{1-\gamma}$.

Pricing formula for future benefits

- Consider an uncertain payoff B_{t} in t years.
- Definition of the present value $P V$ of B_{t} :

$$
\begin{gathered}
U\left(C_{0}-P V\right)+e^{-\delta t} E_{0} U\left(C_{t}+B_{t}\right)=U\left(C_{0}\right)+e^{-\delta t} E_{0} U\left(C_{t}\right) \\
P V=\underbrace{e^{-\delta t} \frac{E_{0}\left[B_{t} U^{\prime}\left(C_{t}\right)\right]}{U^{\prime}\left(C_{0}\right) E_{0}\left[B_{t}\right]}}_{=\exp \left(-\rho_{t} t\right)} E_{0}\left[B_{t}\right]
\end{gathered}
$$

- Suppose $C_{t}=C_{0} \exp (g t)$. Then, equation (1) implies the Ramsey rule:

$$
\rho_{t}=\delta+\gamma g
$$

- Why do we discount the future in a risk-free economy (beyond the immoral rate δ of preference for my generation)?
- Because in a growing economy, investing for the future increases intergenerational inequalities;
- In a growing economy, the discount rate is the minimum IRR that compensates for the welfare-deteriorating impact that investing generates on the generational distribution of consumption.

A model-free Ramsey rule

- Okun's leaky bucket experiment (reversed):
- X consumes twice what Y consumes.
- Okay to sacrifice up to 0.25 from Y to give 1 to X .
- Suppose that consumption doubles every 35 years.
- Conclusion: The PV of 1 in 35 years equals 0.25 .
- This means using a discount rate of 4%.

A model-free Ramsey rule

- Okun's leaky bucket experiment (reversed):
- X consumes twice what Y consumes.
- Okay to sacrifice up to 0.25 from Y to give 1 to $\mathrm{X} . \Rightarrow \gamma=2$
- Suppose that consumption doubles every 35 years. $\Rightarrow g=2 \%$
- Conclusion: The PV of 1 in 35 years equals 0.25 .
- This means using a discount rate of $4 \%=\gamma g$.

$$
r_{f}=\delta+\gamma g
$$

Calibration	δ	γ	g	r_{f}	SCC
Nordhaus	1.5%	1.45	2.15%	4.62%	$\sim 20 \$ / t \mathrm{CO}_{2}$
Stern	0.1%	1.00	1.30%	1.40%	$\sim 200 \$ / t \mathrm{CO}_{2}$

My take on this debate

- Morale issue on the rate of pure preference for "us" (the present). Consensus at $\delta=0$.
- Inequality aversion $=$ risk aversion under the veil of ignorance.

I take $\gamma=2$.

- What about g ? Long-term growth rates are deeply uncertain.
- It makes little sense to build an answer to our sustainability concerns by assuming a large growth rate for the future.
- What is the impact of long-term uncertainties on the estimation of the SCC?
- Most projects have uncertain LT impacts. The discount rate needs to be risk-adjusted.
- I examine impacts having a constant income-elasticity: $B_{t}=\xi C_{t}^{\beta}$.

Normative CCAPM

- Suppose that C_{t} follows a geometric Brownian process with trend μ and volatility σ.
- In this case, equation (1) yields the Consumption-based Capital Asset Pricing Model (CCAPM).
- Linear risk-adjustment to the β :

$$
\rho_{t}=r_{f}+\beta \pi
$$

- Extended Ramsey rule:

$$
r_{f}=\delta+\gamma \mu-0.5 \gamma^{2} \sigma^{2}
$$

- Aggregate risk premium:

$$
\pi=\gamma \sigma^{2}
$$

My take on the normative CCAPM

- The macro uncertainty reduces the risk-free rate r_{f} : Precautionary investment motive (U^{\prime} convex).
- A valuation bonus should be given to actions that hedge the macro risk $(\beta<0)$.
- Adaptation to climate change, strategic oil reserve, hospitals,...
- But this CCAPM yields the standard asset pricing puzzles.
- $\sigma \sim 3 \% \Rightarrow \sigma^{2} \sim 0.1 \%$: Negligible impact of risk.
- Too large risk-free rate;
- Too small aggregate risk premium.
- LT uncertainties are much deeper than those described by a Brownian process.
- Recent literature: Barro, Weitzman, Gollier,...

Parametric uncertainty: A simple illustration

A simple illustration

A bad news in the first period also forces us to revise our expectations downwards.

Uncertain trend and LT uncertainty

- Parametric uncertainty generates an increasing term structure of risk on future consumption.
- Example with $\mu \sim(1 \%, 1 / 2 ; 3 \%, 1 / 2)$ and $\sigma=3.6 \%$.

Uncertain climate sensitivity

Climate beta

- What is the beta of investments whose aim is to reduce emission of CO_{2} ?
- Two opposite stories:
- $\beta<0$: A larger climate sensitivity raises the marginal damages and reduces consumption.
- $\beta=1$: Climate damages are proportional to wealth and consumption.
- The combination of these two effects suggests that the climate beta is less than 1. By how much?
- More research is needed on this key topic.

Monte-Carlo simulation of DICE (Dietz, Gollier and Kessler, 2017)

- Estimated $\beta_{50} \sim 0.7$.

Monte-Carlo simulation of Golosov's model

- Estimated $\beta_{50} \sim-3.5$.

Conclusion

- More research needs to be done on the risk characteristics of climate change. A climate beta close to zero is "likely".
- Deep uncertainties and the plausibility of a persistent macro-catastrophe suggests using a discount rate around $1-2 \%$.
- Using EPA recent estimates, a value around $200 \$ / \mathrm{tCO}_{2}$ seems reasonable.
- Given the remaining complexities of this CBA, a cost-efficiency approach should be considered.

