Climate Policy Toward Carbon Reduction and Greener Cities Adaptation

Prof. dr. Tine Compernolle Dr. Thomas Machiels Drs. Spiros Gkousis

Outline of the presentation

Introduction

Case study examples

- Deep geothermal energy extraction (economic criterion)
- Deep geothermal energy extraction (economic and environmental criteria)
- Transport infrastructure (railway)

Ongoing projects

- Transport infrastructure (tunneling the Antwerp ringroad)
- Sustainable management of the deep subsurface

Introduction

- Prof. Dr. Tine Compernolle
- Research group EnvEcon @UAntwerp
- Royal Belgian Institute of Natural Sciences

→Interdisciplinary research

→Transdisciplinary research?

• Involving policy makers/stakeholders

Introduction

- Dr. Thomas Machiels
- Dr. Roel Nagy
- Spiros Gkousis

Introduction

- Context of climate change
- Limited resource availability
- →Transition to a low-carbon, circular economy
 →A just transition
- → Need for new technologies
- → Investment are irreversible and characterized by multiple sources of uncertainty. There is flexibility in the decision making process
- >Evaluation should involve an economic, environmental and social dimension

The decision to invest under uncertainty

A case study example

deep geothermal energy development

Real options-like approach

Technical uncertainty stimulates investment

Example: geothermal energy extraction

 \rightarrow a two-period case

→ the time at which you have learned, is predefined.

Multiple sources of uncertainty

- Market uncertainty: energy prices
- Geological uncertainty (= technical uncertainty)

Experts:

independent, academic background, well acquainted with deep geology in BE, not directly involved in the setting up of the methodology and processing of results.

Inquiry:

2 reservoirs targeted (Campine Basin and Mons basin)

The reservoir concept is described by the probability distributions for 10 parameters:

- the geotechnical failure of the reservoir,
- depth,
- total thickness,
- productive thickness,
- the geothermal gradient,
- transmissivity,
- flow rate,
- effective porosity,
- the distance between doublets and the wells.
 University of Antwerp University of Antwerp Interfaces

Probability distributions of the estimated values for borehole depth, water flow and temperature resulting from the expert questionnaires (for the Balmatt site).

Stage-gate-system

- Exploration phase
- Development phase

Geological uncertainty resolves

Flexibility after learning:

- The option to abandon the project
- If development: choice in different types of geothermal development

NPV analysis + Monte Carlo simulation

	Probability	NPV
(1) Abandon project	45.27%	-€ 6,447,272
(2) LT Heat	0.10%	-€ 6,121,965
NPV<0	0.09%	
NPV>0	0.01%	
(3) HT Heat	54.63%	€ 6,780,975
NPV<0	19.55%	
NPV>0	35.08%	
(4) Binary power plant	0.00%	€ 0.00
NPV<0	0.00%	
NPV>0	0.00%	
Expected average project value		€ 779,896

	Probability	NPV	
(1) Abandon project	45.27%	-€ 6,447,272	
(2) LT Heat	0.10%	-€ 6,121,965	
NPV<0	0.09%		
NPV>0	0.01%		
(3) HT Heat	54.63%	€ 6,780,975	
NPV<0	19.55%		
NPV>0	35.08%		
(4) Binary power plant	0.00%	€ 0.00	
NPV<0	0.00%		
NPV>0	0.00%		
Expected average project value		€ 779,896	

Value with learning + flexibility

(3) HT Heat	54.63%	€ 6,780,975
NPV<0	19.55%	
NPV>0	35.08%	

Value without learning and flexibility

(3) HT Heat	100%	€-2,2887,482	← € 7	779,896
NPV<0	64.5%			
NPV>0	35.5%			

Fig. 3. Distribution of the stochastic values for reservoir temperature (grey, total), and of the projects that are either abandoned (red) or activated (green).

Policy implications

Policy implications

blot diagrams of the project values for the single and combined policy instruments, ranked according to their associated public cost. If the upper whiskers are pared to the No Policy case, windfall profits occur.

The decision to invest under uncertainty

A case study example deep geothermal energy development Environmental and economic criteria

Integrating Environmental LCA and Techno-economic assessment

Least square Monte Carlo algorithm by Longstaff and Schwartz

 To account for an environmental criterion in addition to the economic value criterion

→ To minimize the global warming impact of the investigated system

Integrating Environmental LCA and Techno-economic assessment

University of Antwerp Faculty of Business and Economics

The decision to invest under uncertainty

A case study example Investment in railway infrastructure Stakeholder involvement

Real options in urban planning

Investment in railway infrastructure

A qualitative real options approach

Investment in railway infrastructure

 $\longrightarrow \blacksquare^{\dagger} BART with grow \longrightarrow \blacksquare^{\bullet} Regional rail option (BART+) \longrightarrow \blacksquare^{\bullet} (+RR)$

Investment in railway infrastructure

niversity of Antwer

Faculty of Business

30

The decision to invest under uncertainty

Ongoing projects

The 'Future Alliance' in Antwerpen : a compromise between mobility and liveability

University of Antwerp Faculty of Business and Economics

Tunneling the Antwerp ringroad

- Stakeholder involvement
 - Uncertainty avoidance
 - Focus on social cost benefit analysis

• Lack of data \rightarrow scenario analysis

Flexibility?

Dynamic integrated assessment methods for the sustainable development of the deep subsurface (DIAMONDS)

Dynamic integrated assessment methods for the sustainable development of the deep subsurface (DIAMONDS)

Linking to the objectives

O1: to understand what sustainable management of geological resources involves and how to measure it

O2: to develop flexible (hydro)geological models to determine hydrogeological threshold values for the identified sustainability indicators

E

O3: to determine the social impacts of subsurface utilization, considering tenets of environmental justice

O4: to detemine the economic impacts of subsurface utilization in time, taking into account different development options

O5: to determine the changes in environmental impact resulting from subsurface utilization, taking into account the time at which these impacts occur

O6: to integrate the calculated environmental and economic values together with hydrogeological values into a multi-dimensional decision support framework

Conclusion

Real options analysis can support policy making

- By evaluating different policy measures and investigate the impact on the decision to invest
- By integrating multiple criteria in the decision analysis
- Bringing real options-thinking to the practice field is a challenge

Climate Policy Toward Carbon Reduction and Greener Cities Adaptation

Prof. dr. Tine Compernolle Dr. Thomas Machiels Drs. Spiros Gkousis

