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Abstract

Carroll et al. [7] establish that in a model with internal habits, an increase in economic growth

may cause a positive change in savings. The optimality of this result has been recently questioned

by several contributions in the literature which have observed that the parametrization used in

[7] implies a utility function not jointly concave in consumption and habits. In this short paper,

we revisit this issue: firstly we explain that it can be solved only through advanced techniques

in Dynamic Programming and then we prove, using them, how the candidate optimal control

found in [7] is indeed the unique optimal control.
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1 Introduction

In a very influential work, Carroll et al. [7] have studied the dynamics of an endogenous growth

model with internal habits formation and they have shown that internal habit formation is a

crucial channel to explain how an increase in economic growth may cause an increase in savings.

Since then, several authors have observed that this result was obtained in a parameters’ set,

let us call it Θ, where the multiplicative utility function is never jointly concave in consumption

and habits. In particular, they have noticed that joint concavity is never possible under the

(realistic) assumptions of a greater than one coefficient of relative risk aversion, i.e. σ > 1, and

of agents weighting habits less than consumption, i.e. 0 < γ < 1 (e.g. Caballe et al. [5], page

1669, and more recently Yang and Zhang [23]).

As a consequence, the sufficiency conditions for optimality are not satisfied;1 as clearly ex-

plained by Seierstad and Sydsaeter (see page 103 in [22]) the sufficiency conditions for optimality

are crucial because “(...) the Maximum Principle cannot by itself tell us whether a given candi-

date is optimal or not, nor does it tell us whether or not an optimal solution exists”. In other

words, the solution candidate could be a maximum a minimum or neither of them.

In addition, it is even not clear, without the strict concavity of the objective function, if the

optimal control is unique or not (e.g. Acemoglu [1], Theorem 6.4 and Corollary 6.1, page 189-

190). Other candidate optimal controls cannot be excluded only looking at the analysis done in

Carroll et al. [7], because the authors have investigated the local dynamics around the steady

state but not the global dynamics. Interestingly, there are several examples in the literature of

models without a strictly concave Hamiltonian and multiple optimal controls, e.g. Dechert and

Nishimura [12] and Kamihigashi and Roy [18] among others.

In other words, Carroll et al. [7], by looking at the first order conditions from the Maximum

Principle, have found a candidate optimal control but they have fallen short of proving that this

candidate is indeed the unique optimal control. As previously explained, the candidate could

be a maximum or a minimum or neither of them.

A simple way to restore optimality and uniqueness consists in imposing conditions on the

parameters such that the utility function becomes strictly concave (e.g. Yang and Zhang [23]).

Unfortunately, for a coefficient of relative risk aversion greater than one, i.e. σ > 1, concavity is

restored only under the unattractive and rather implausible assumption that agents care about

the habits more than about consumption, i.e. γ > 1. It would be, therefore, important to

understand whether this strong condition is really necessary.

In this short paper, we revisit this issue using the Dynamic Programming approach. The

advantage of Dynamic Programming is that it investigates the global dynamics and, most im-

portantly, it identifies optimality conditions which are sufficient independently on any concavity

assumption providing the optimal strategies in feedback form. Therefore, using a Dynamic

Programming approach seems very natural in this context.

Indeed, using the Dynamic Programming approach in its full power let us prove that a unique

optimal control strategy exists. Such optimal strategy is given in feedback form. Moreover we

show that it must be equal to the candidate optimal strategy found by Carroll et al. [7].

However, the application of the Dynamic Programming approach to our specific problem

1More precisely, it will be shown later that neither the Hamiltonian nor the maximum value Hamiltonian are

concave and therefore the Mangasarian’s and Arrow’s sufficiency conditions for optimality are not respected.
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is not straightforward because it requires a not trivial adaptation of the existing literature

on optimal control and viscosity solutions. Although this literature was developed in the last

four decades starting with the seminal work of Crandall and Lions [9, 10],2 its application to

macroeconomic problems is more recent (see e.g. the recent contribution by Achdou et al. [3]).

In our framework, this theory can be applied after taking the homogeneity properties of the

problem into account (see e.g. Freni et al. [16, 15]). Once this is done, we use the theory of

viscosity solutions for the associated Hamilton-Jacobi-Bellman equation to prove the differen-

tiability of the value function (see e.g. Cannarsa and Soner [6] or Bardi and Capuzzo-Dolcetta

[4] for results of this type) and to solve the Closed Loop Equation (see e.g. Freni et al. [15]).

We may heuristically say that the role usually played by the concavity of the value func-

tion in proving the existence and uniqueness of optimal feedback strategies, is here somehow

replaced by the linearity of the state equations, the monotonicity of the utility function and the

differentiability of the value function.

Following this approach we are therefore able to prove that a unique optimal control strategy

exists. Such optimal strategy is given in feedback form and it is equal to the candidate optimal

strategy found by Carroll et al. [7]. In this way, we provide a solid theoretical background

to Carroll et al. [7] result on the relation between economic growth and savings, and most

importantly we answer to the raising concerns on the validity/optimality of this prediction.

More generally, our paper represents a neat example of how optimal control problems without

a concave objective function can be dealt with using a Dynamic Programming approach. In

particular, we show how much effective the dynamic programming approach can be in dealing

with problems of optimality and uniqueness which would be otherwise unsolvable by simply

looking at the Pontryagin’s Maximum Principle.3

The paper is organized as it follows. In Section 2, the optimal control problem is introduced

and it is shown that standard sufficiency conditions for optimality do not hold in the parameters

set usually assumed in the literature. In Section 3, we move to the Dynamic Programming

approach and we explain the key steps to solve the control problem and to prove the existence

and uniqueness of an optimal control. Section 4 concludes the paper. Appendix A contains

more details on the derivations to check the sufficiency conditions of optimality while Appendix

B contains more details on the Dynamic programming approach followed to solve our problem.

2 The Optimal Control Problem

The optimal control problem studied by Carroll et al. [7] is the following:

max
c

∫ ∞
0

(
c
hγ

)1−σ
1− σ

e−θtdt (1)

2See also Crandall et al. [11] or Bardi and Capuzzo-Dolcetta [4] among others.
3It is worth mentioning that this does not mean that the Dynamic Programming approach is more powerful

than the Maximum Principle. This strongly depends on the problem under study and, in general, integrating the

two approaches is the best strategy to deal with difficult problems like those characterized by non-concavity.
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subject to

k̇ = Bk − c, k(0) = k0 (2)

ḣ = ρ(c− h), h(0) = h0 (3)

k0 > 0 given, h0 > 0 given (4)

k > 0, h > 0, c > 0, (5)

where B := A− δ, and the set of parameters conditions is:

Θ := {(A, θ, ρ, δ, σ, γ) : A, θ > 0, ρ ∈ (0, 1), δ ∈ [0, 1], σ ∈ (1,∞), γ ∈ [0, 1)}. (6)

More formally, the optimal control can be described as it follows. Let us denote withA(k0, h0)

the class of admissible controls containing all locally integrable functions c(·) : [0,+∞) →
(0,+∞) such that the unique solution of the initial value problem (2)-(3) is defined in [0,∞)

and respects the inequality constraints (5), given the set of parameters’ conditions Θ. Note that

we underline the dependence of such set on the initial data (k0, h0) ∈ R2
++.

Then, the objective of this optimal control problem is to find the c∗ ∈ A(k0, h0) which

maximizes the functional

W(k0, h0; c) :=

∫ ∞
0

(
c
hγ

)1−σ
1− σ

e−θtdt,

i.e. to find c∗ ∈ A(k0, h0) such that

W(k0, h0; c
∗) = sup

c∈A(k0,h0)
W(k0, h0; c)

From now on, we call (P) this problem. As usual, we define the value function of problem (P)

as the map

V (k0, h0) := sup
c∈A(k0,h0)

W(k0, h0; c). (7)

Carroll et al. [7] use the Pontryagin’s Maximum Principle (PMP) and find that the balanced

growth path, as well as the paths converging to it, are solution candidates. However, the PMP

provides the necessary (but not sufficient) conditions for optimality. In other words, the PMP

cannot, by itself, tell us if a candidate is optimal or not, nor whether an optimal solution does

exist.

On the other hand, if certain concavity/convexity conditions on the functions involved, are

respected, then any solution candidate identified by the PMP is optimal.4 Such sufficiency

conditions for optimality are mainly of two types.

The first, usually known as the Mangasarian sufficiency theorem for optimality, assumes the

joint concavity in the control and state variables of the so-called “current value Hamiltonian” (see

the original paper in finite horizon of Mangasarian [20] and, for the case treated here, Seierstad

and Sydsaeter [22], Theorem 11, p.385). In our framework, the current value Hamiltonian is

HCV (h, k, ψ, λ; c) ≡
(
c
hγ

)1−σ
1− σ

+ ψ[(A− δ)k − c] + λρ(c− h), (8)

4To emphasize again the importance of the sufficiency conditions, we notice that, without them, it cannot be

claimed that the solutions of first order conditions are actually optimal without further investigation.
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which is concave as long as the utility function is (jointly) concave in (c, h).5 Unfortunately,

the utility function is never jointly concave in c and h in the parameters’ set Θ since concavity

implies γ ≥ σ
σ−1 > 1 for σ > 1 (see Appendix A – “Mangasarian sufficiency conditions”, and

also Caballe et al. [5], page 1669).

The other sufficiency condition for optimality is based on the Arrow sufficiency theorem

(e.g. Seierstad and Sydsaeter [22], Theorem 14, p.236-237 or also Theorem 11, p.385-386) which

requires the joint concavity in the state variables of the “maximum value Hamiltonian”. In our

framework, the maximum value Hamiltonian,

HMAX(h, k, ψ, λ) ≡ max
c∈A

HCV (h, k, ψ, λ; c),

can be proved to be never jointly concave in (h, k) in the parameter set Θ and, therefore, the

Arrow’s sufficiency conditions for optimality do not hold (see Appendix A – “Arrow sufficiency

conditions”). Exactly as before, the concavity can be restored when γ ≥ σ
σ−1 > 1 for σ > 1

which is not included in the parameter set Θ.

Therefore, further investigation is needed to verify whether the solution candidate identified

by Carroll et al. [7] is optimal or not. In fact, the two types of sufficiency conditions for

optimality, that we have checked above, are sufficient but not necessary, meaning that the

parameter’s condition, σ > 1 and γ ≥ σ
σ−1 > 1, suggested by these criteria, could be actually

too restrictive.

Another issue related to the non-concavity of the utility function, is that the value function,

V (k0, h0), may be not strictly concave and multiple optimal controls could exist (e.g. Acemoglu

[1], Theorem 6.4 and Corollary 6.1, page 189-190). Examples of models with a non-concave

Hamiltonian and multiple optimal paths are Dechert and Nishimura [12] and Kamihigashi and

Roy [18], among others.

All the above, as already observed in the introduction, explains why we decided to investigate

the problem using the Dynamic Programming approach. This is done in the next section where

we also provide the main results (Theorem 1 and Corollaries 1-2) which show that the strategy

provided in Carroll et al. [7] is indeed the optimal one and we provide it in an appropriate

feedback form.

3 Dynamic Programming

In this section we develop the Dynamic Programming approach to problem (P) and show that,

for every initial condition (k0, h0) there exists a unique optimal consumption strategy c∗(k0,h0)(·)
which is given in closed-loop form.

The problem is not standard and cannot be solved using existing results in the literature,

even the recent one. We then develop an ad hoc method to solve it.6 The steps of our method

are the following.

(I) We use the homogeneity of the utility function u(c, h) to prove the homogeneity of the

value function (see Appendix B.1) and to reduce the solution of the problem (P) (which

5This is indeed the case because the state equations are linear in (c, h, k) and the Hamiltonian is separable in

the state variables.
6More details can be found in Appendix B.
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displays the two state variables k and h) to the solution of an auxiliary problem (P̃) with

one state variable z, corresponding to k/h ((see Appendix B.2)).

(II) We prove that the Hamilton-Jacobi-Bellman equation of problem (P̃) admits a unique

regular solution which can be used to find the unique optimal feedback strategy for it (see

Appendix B.3).

(III) We go back to the problem (P) expressing its unique optimal strategy in terms of the

optimal strategy of problem (P̃) (see Appendix B.4).

We now provide a brief explanation of such steps and present our main results.

Roughly speaking, the auxiliary control problem (P̃) is obtained by rewriting the original

optimal control problem (P) in the new state-like variable and control-like variable which are

respectively

z(t) := k(t)/h(t) and a(t) := c(t)/h(t).

The state equation becomes

z′(t) = (B + ρ)z(t)− (1 + ρz(t))a(t), z(0) = z0 > 0, (9)

while the functional in the new variables becomes

J(z0; a) :=

∫ +∞

0

a(t)1−σ

1− σ
e−(θ+ρη)t+ρη

∫ t
0 a(s)ds dt =W(k0, 1; c), (10)

where, for brevity, we set η := (1 − γ)(1 − σ). The set of admissible controls, Ã(z0), contains

locally integrable functions a(·) : [0,+∞)→ (0,+∞) such that the unique solution of the initial

value problem (9) is strictly positive at any t ≥ 0. The value function is

V0(z0) := sup
a(·)∈Ã(z0)

J(z0; a). (11)

The HJB equation associated to this auxiliary problem (P̃) is the following (with unknown

solution v0 and current variable z).

[θ + ρη] v0(z) = (B + ρ)zv′0(z) +
σ

1− σ
[
v′0(z)(1 + ρz)− ρηv0(z)

]1−σ−1

(12)

Using the Hamiltonian notation we can rewrite the above equation as

[θ + ρη] v0(z) = H̃MAX(z, v0(z), v
′
0(z)) (13)

where

H̃CV (z, q, p; a) := (B + ρ)zp− (1 + ρz)ap+ ρηaq +
a1−σ

1− σ
, (14)

H̃MAX(z, q, p) := sup
a>0

H̃CV (z, q, p; a) = (B + ρ)zp+
σ

1− σ
[(1 + ρz)p− ρηq]1−σ

−1

. (15)

The following proposition states the equivalence of the two problems and its proof can be

found in Appendix B.2.

Proposition 1 Let V and V0 be the value functions defined in (7) and (11), respectively. Let

the parameters (A, θ, ρ, δ, σ, γ) belong to the set Θ defined in (6). Take any k0 > 0, h0 > 0. Then

the following results hold.
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(i) We have that

V (k0, h0) = h
(1−γ)(1−σ)
0 V0(k0/h0). (16)

(ii) If a control c∗ is optimal at (k0, h0) for problem (P), then the control a∗ := c∗/h∗ (where

h∗ is the solution of (3)) is optimal for problem (P̃) at z0 = k0/h0.

Viceversa if a control a∗ is optimal at (z0) for problem (P̃), then the control c∗ := h∗a∗,

where h∗ is the solution of

(h∗)′(t) = ρh∗(t)[a∗(t)− 1], h(0) = h0 (17)

is optimal at (h0z0, h0) for problem (P).

Problem (P̃) is solved in Appendix B.3; using its solution we solve problem (P) in Appendix

B.4. The main result of this analysis is then summarized in the following theorem.

Theorem 1 Let V and V0 be the value functions defined in (7) and (11), respectively. Let

the parameters (A, θ, ρ, δ, σ, γ) belong to the set Θ defined in (6). Then V0 and V are strictly

negative and of class C1 (in R++ and R2
++, respectively). Moreover, we have the following.

(i) Set, for all z > 0,

G0(z) := argmaxa>0H̃CV (z, V0(z), V
′
0(z); a) =

[
(1 + ρz)V ′0(z)− ρ(1− γ)(1− σ)V0(z)

]−σ−1

.

The closed loop equation

z′(t) = (B + ρ)z(t)− (1 + ρz(t))G0(z(t)), z(0) = z0 > 0 (18)

admits a unique solution z∗(·). Such solution is strictly positive for all t ≥ 0. The closed

loop control strategy

a∗(t) := G0(z
∗(t)) (19)

is the unique optimal control strategy for problem (P̃) with initial state z0.

(ii) Set, for all k, h > 0,

G(k, h) := argmaxc>0HCV (k, h, Vk(k, h), Vh(k, h); c) = hγ−γ/σ [Vk(k, h)− ρVh(k, h)]−1/σ .

The closed loop system{
k′(t) = Bk(t)−G(k(t), h(t)), k(0) = k0 > 0

h′(t) = −ρh(t) + ρG(k(t), h(t)), h(0) = h0 > 0
(20)

admits a unique solution (k∗(·), h∗(·)). Its components are both strictly positive for all

t ≥ 0. The closed loop control strategy

c∗(t) := G(k∗(t), h∗(t)) (21)

is the unique optimal control strategy for problem (P) with initial state (k0, h0).

As a consequence we get the following corollary.

6



Corollary 1 Let k0 > 0, h0 > 0, let c∗ be the optimal control strategy at (k0, h0) and let k∗, h∗

be the associated state trajectories. Set ψ∗(t) := Vk(k
∗(t), h∗(t)) and λ∗(t) := Vh(k∗(t), h∗(t)).

Then the 5-tuple (k∗, h∗, c∗, ψ∗, λ∗) solves the system of necessary conditions consisting of the

state equations (2)-(3) and of (see equations (21)-(23) in Carroll et al. [8])

∂HCV

∂c
= 0

ψ′(t) = −∂HCV

∂k
+ θψ(t)

λ′(t) = −∂HCV

∂h
+ θλ(t)

(22)

Moreover such 5 − tuple also satisfies the transversality conditions (see equations (24)-(27) in

Carroll et al. [8]) 
ψ(t) ≥ 0

limt→+∞ e
−θtψ(t)k(t) = 0

λ(t) ≤ 0

limt→+∞ e
−θtλ(t)h(t) = 0

(23)

We observe that, the conditions (21)-(27) in Section 3.2 of Carroll et al. [8], corresponding

to conditions (22)-(23) in this paper, are presented as “necessary and sufficient conditions”,

which is not at all obvious due to the lack of concavity of the problem. For the same rea-

son it is not clear if the solution to such system is unique. We now show that the optimal

strategies/trajectories/costate indeed coincide with the ones provided in Carroll et al. [7] and

[8].

First of all we look at the case of Balanced Growth Path (BGP). In such case, using Corollary

1, we can explicitly compute the optimal control strategy and the associated optimal state path

and immediately show that they are the same as in Carroll et al. [7] and [8].

Second, out of the BGP, the unique optimal control-state path given in Theorem 1 solves

the above system (22) (plus the transversality conditions (23)). This can be used to prove that

such optimal path indeed coincides with the one numerically computed in Carroll et al. [7] and

[8].

Indeed, Carroll et al. [7] and [8], numerically compute what they claim to be the optimal

strategy (without proving the optimality), by considering the system (7)—(9) in [7] with a generic

initial condition (k0, c0) and selecting, among the initial controls, the one whose associated path

converges to the steady state. The following corollary prove that such a path is indeed the

unique optimal control.

Corollary 2 Let k0 > 0, h0 > 0, and let c∗ be the unique optimal control strategy as proved in

Theorem 1. Then the unique optimal path (k∗, h∗, c∗) coincides with the one computed in Carroll

et al. [7] and [8] because the following results hold:

• The associated variables c∗

h∗ , ċ∗

c∗ , k∗

h∗ solve the system (7)—(9) in Carroll et al. [7] with

initial conditions k(0) = k0, h(0) = h0, c(0) = G(k0, h0), with G derived in Theorem 1.

• These associated variables converge to the steady state given in (10)—(13) in Carroll et

al. [7].
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• The initial value problem (7)—(9) in Carroll et al. [7] with initial condition k(0) = k0,

h(0) = h0, c(0) 6= G(k0, h0) has no solution converging to the steady state.

4 Concluding Remarks

In this paper, we have first shown that the Maximum Principle cannot be used to establish

the optimality of the solution in the internal habit formation model studied by Carroll et al.

[7] and [8] since the usual sufficiency conditions for optimality do not hold. Then, we have

re-investigated the optimality issue using a Dynamic Programming approach as well as some

relatively new (from an economist’s perspective) results on the regularity of viscosity solutions

and we have successfully proved that the prediction, according to which an increase in economic

growth may cause a positive change in savings, is actually optimal.

The advanced techniques in Dynamic Programming presented in this paper can be adapted to

solve similar optimal control problems where the existence and uniqueness of an optimal control

cannot be derived from the Maximum Principle due to the lack of concavity of the objective

function and the uninformative results emerging by checking the usual sufficiency conditions

used in the literature.
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A Appendix A: Derivations

Mangasarian sufficiency condition

We need to check wether the current value Hamiltonian (8) is concave or not. Its concavity

depends on the concavity of the utility function in (c, h, k).7 The utility function u(c, h) =
( c
hγ )

1−σ

1−σ , is concave in R2
++ := {(c, h) : c > 0, h > 0} when its Hessian

D2u(c, h) =

[
−σ c−σ−1

hγ(1−σ)
γ(σ − 1) c−σ

hγ(1−σ)+1

γ(σ − 1) c−σ

hγ(1−σ)+1 −γ(γ(σ − 1)− 1) c1−σ

hγ(1−σ)+2

]

is negative semi-definite. This is true if and only if all the principal minors of order 1 of D2u(c, h)

are ≤ 0 and the determinant is ≥ 0. This is clearly true in the case without habits, γ = 0, no

matter what are the values of the other parameters. On the other hand, in the case with habits

and specifically in the parameter’s set Θ, where γ ∈ [0, 1) and σ ≥ 1, the condition for concavity

are the following:

ucc(c, h) = −σ c−σ−1

hγ(1−σ)
< 0, always, (24)

uhh(c, h) = −γ(γ(σ − 1)− 1)
c1−σ

hγ(1−σ)+2
≤ 0, ⇐⇒ γ ≥ 1

σ − 1
, (25)

det(D2u(c, h)) =
c−2σ

h2γ(1−σ)+2
[γ(γ(σ − 1)− σ)] ≥ 0 ⇐⇒ σ > 1 and γ ≥ σ

σ − 1
> 1.(26)

Therefore, the last inequality is never respected and the utility function is never jointly concave

in c and h in the parameters’ set Θ.8

Arrow sufficiency conditions

To check if the Arrow sufficiency condition for optimality is respected, we start noticing that

from the first order condition we have that

∂HCV (h, k, ψ, λ; c)

∂c
= 0 ⇔ c

hγ
= (ψ − λρ)−1/σh−

γ
σ

Substituting this into the Hamiltonian (8) leads to the maximum value Hamiltonian

HMAX(h, k, ψ, λ) = a(ψ, λ)hγ−γ/σ + ψ(A− δ)k − λρh, (27)

where a(ψ, λ) = σ
1−σ (ψ − λρ)1−1/σ Noting that a positive consumption-habit ratio requires

ψ − λρ > 0 and that, in our parameter set Θ, we have σ > 1, we get a(ψ, λ) < 0.

Now we check whether HMAX(h, k, λ, ψ) is concave in (h, k). Since k enters linearly, we

have that ∂2HMAX
∂k2

= 0. Since HMAX is separable in the variable h and k, we have also that
∂2HMAX
∂k∂h = 0. Therefore, the determinant of the Hessian associated to HMAX is zero and the

only condition to check for concavity is the sign of ∂2HMAX
∂h2

. We have

∂2HMAX

∂h2
= a(ψ, λ)(γ − γ/σ)(γ − γ/σ − 1)hγ−γ/σ−2

7This is indeed the case because the state equations are linear in (c, h, k) and the Hamiltonian is separable in

the state variables.
8It is also worth noticing that the utility function is also never convex because the Hessian is never positive

semi-definite.
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Now, since σ > 1 and γ < 1 we get

γ − γ/σ > 0, γ − γ/σ − 1 < 0

which implies, since a(ψ, λ) > 0, that

∂2HMAX

∂h2
> 0, ∀k > 0, h > 0.

Therefore, concavity does not hold.

B Appendix B: Dynamic Programming

B.1 First properties of the value function V

First of all we provide some useful properties of the value function V defined in (7).

Proposition 2 Let V be the value function defined in (7) and let the parameters (A, θ, ρ, δ, σ, γ)

belong to the set Θ defined in (6). Then we have the following.

(i) We have

0 ≥ V (k0, h0) ≥
θ

1− σ
(Bk0)

1−σ [h0 ∨ (Bk0)]
−γ(1−σ) > −∞.

(ii) V is increasing in the first variable (k0) and decreasing in the second variable (h0).

(iii) V is (1− γ)(1− σ) homogeneous in R2
++.

(iv) Given any α > 0 and (k0, h0) ∈ R2
++, if a control c∗ is optimal at (k0, h0) then the control

αc∗ is optimal at (αk0, αh0) and viceversa.

Proof.

(i) Obviously V ≤ 0 since the utility function is negative. Moreover taking the control c(t) ≡
Bk0 we get that k(t) ≡ k0 and

h(t) = e−ρth0 + ρ

∫ t

0
e−ρ(t−s)Bk0ds = e−ρth0 +Bk0(1− e−ρt) ≤ h0 ∨ (Bk0)

Hence ∫ +∞

0
e−θtu(c(t), h(t))dt ≥ 1

1− σ

∫ +∞

0
e−θt(Bk0)

1−σ [h0 ∨ (Bk0)]
−γ(1−σ) dt =

=
θ

1− σ
(Bk0)

1−σ [h0 ∨ (Bk0)]
−γ(1−σ) > −∞.

This gives the required estimate of the value function.

(ii) We can immediately see that the set A(k0, h0) gets bigger as k0 increases while the utility

does not depend on k(t) (so it also does not depend on k0). Hence V must increase in k0.

On the other hand the set A(k0, h0) does not change as h0 changes while the utility

decreases (since γ > 0 and σ > 1) in h(t), hence in h0, as the equation for h(t) is linear.

So V must decrease in h0.

11



(iii) and (iv) By linearity of the state equations (2)-(3) we get that, for every α > 0 and (k0, h0) ∈ R2
++,

A(αk0, αh0) = αA(k0, h0), h(t;αh0, αc) = αh(t;h0, c) and

W(αk0, αh0;αc) = α(1−γ)(1−σ)W(k0, h0; c) (28)

Hence, for every α > 0, we have, taking the supremum in (28),

V (αk0, αh0) = α(1−γ)(1−σ)V (k0, h0).

The above also implies that if a control c∗ is optimal at (k0, h0) then the control αc∗ is

optimal at (αk0, αh0) and viceversa.

B.2 Equivalence of problem (P) with problem (P̃)

Here we prove Proposition 1.

Call, for simplicity, η := (1 − σ)(1 − γ) from now on. Let (k0, h0) ∈ R2
++ and let c(·) ∈

A(k0, h0). Let k(·) and h(·) be the associated solutions of the state equations (2)-(3). We have

d

dt

k(t)

h(t)
=
k′(t)h(t)− k(t)h′(t)

h2(t)
=
Bk(t)− c(t)

h(t)
− k(t)

h(t)
· ρc(t)− ρh(t)

h(t)
.

Hence, setting z(t) := k(t)/h(t) and a(t) := c(t)/h(t), we get

z′(t) = Bz(t)− a(t)− z(t)(ρa(t)− ρ) = (B + ρ)z(t)− (1 + ρz(t))a(t).

Since c(·) ≥ 0 implies a(·) ≥ 0 and k(·) > 0 implies z(·) > 0 we immediately get that a(·) ∈ Ã(z0)

for z0 = k0/h0.

Viceversa, take any z0 > 0 and a(·) ∈ Ã(z0), and, for h0 > 0 let h(·) be the solution of

h′(t) = ρh(t)[a(t)− 1], h(0) = h0.

Call c(·) := h(·)a(·) and k(·) := h(·)z(·). Then, reversing the above argument, we see that

c(·) ∈ A(k0, h0).

On the other hand the original objective functional in the variables z(t) and a(t) becomes

W(k0, h0; c) =

∫ ∞
0

(
c(t)
h(t) · h(t)1−γ

)1−σ
1− σ

e−θtdt =

∫ ∞
0

a(t)1−σ

1− σ
h(t)ηe−θtdt.

Now, note that here h′(t) = ρc(t)− ρh(t), which implies

h′(t)

h(t)
= ρa(t)− ρ ⇒ h(t) = h0e

ρ
∫ t
0 (a(s)−1)ds

and

W(k0, h0; c) = hη0

∫ ∞
0

a(t)1−σ

1− σ
eρη

∫ t
0 a(s)dse−(θ+ρη)tdt = hη0J(k0; a). (29)

By (29) and the above equivalence of admissible set of controls we get that

sup
c(·)∈A(k0,h0)

W(k0, h0; c) = hη0

∫ ∞
0

a(t)1−σ

1− σ
eρη

∫ t
0 a(s)dse−(θ+ρη)tdt = hη0 sup

a(·)∈A(k0/h0)
J(k0; a). (30)

This proves point (i) of Proposition 1. Point (ii) immediately follows from the fact that the

above argument on the equivalence of admissible controls works exactly in the same way to

prove the equivalence of optimality of controls.
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B.3 Solving the auxiliary problem: properties of V0

B.3.1 Properties of V0

Proposition 3 Let V0 be the value function defined in (11) and let the parameters (A, θ, ρ, δ, σ, γ)

belong to the set Θ defined in (6). Then the following results hold.

(i) We have

0 > V0(z0) ≥
θ

1− σ
(Bz0)

1−σ [1 ∨ (Bz0)]
−γ(1−σ) > −∞.

(ii) V0(0
+) = −∞, V0(+∞) = 0 and V0 is continuous and strictly increasing in (0,+∞).

(iv) V0 is a viscosity solution, in (0,+∞), of the HJB equation (12). It is also the unique

viscosity solution satisfying V0(0
+) = −∞ and V0(+∞) = 0.

(v) V0 is continuously differentiable in (0,+∞) and hence also a classical solution of the HJB

equation (12), in (0,+∞).

Sketch of proof. The proof of the above result is quite long and nontrivial. For brevity we

only provide a sketch giving the main ideas.

(i) This point, when the first inequality is large, follows immediately from Proposition 1-(i)

and Proposition 2-(i). The fact that V0 < 0 is part of the proof of the subsequent point

(ii).

(ii) The fact that V0(+∞) = 0 follows from point (i) simply taking the limits in the inequal-

ity. Moreover V0 is increasing since the set of controls Ã(z0) increases when z0 increases.

Furthermore it can be proved, using an estimate from above like the one proved in [16,

Lemma 4.2-(15)], that V0 < 0 and V0(0
+) = +∞. The continuity follows from straight-

forward arguments which use the dynamic programming principle, as in [15, Proposition

4.5], or as in [19, Section 11]. The fact that V0 is strictly increasing in (0,+∞) can be

proved by using the same arguments of [2, Theorem 6.1].

(iv) The fact that V0 is a viscosity solution is a standard consequence of the dynamic program-

ming principle which here follows as in Section 4.2 of [15] (see in particular [15, Proposition

4.5]). See also [2, Section 7.2]

(v) This last fact follows using the same argument of [15, Theorem 4.12] (see also [6]).

B.3.2 Solution of P̃

We provide here a sketch of the proof of part (i) of Theorem 1.

First of all the fact that V0 is strictly negative and of class C1 in R++ follows from the above

Proposition 3.

Second, consider the closed loop equation (18). Existence and uniqueness of a local solution

z∗ follows from the standard Cauchy-Lipschitz theory since V ′0 , and then G can be proved to be

C1 using the HJB equation (12) and the Implicit Function Theorem. To achieve global existence

we use that G(z) > 0 for z > 0 and G0(0
+) = 0, this last fact can be proved by using estimates
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like the ones of the proof of [2, Theorem 6.1] (see also [13, Corollary 4.20] for similar arguments).

Strict positivity (and hence uniqueness) follows by a contradiction argument which uses the fact

that optimal control strategies exist and must be strictly positive (which follows e.g. as in [2,

Theorem 5.1] and [15, Proposition 4.16]).

Once the above is proved, the fact that (z∗, a∗) is an optimal couple follows from a Verification

Theorem which can be proved here exactly as in [14, Section 3]. Uniqueness of the optimal control

strategy follows since the Verification Theorem, in this case, also provides a necessary condition

(as in [14, Section 4.3.2]).

B.4 Back to the problem P: Proof of second part of Theorem 1 and of

Corollaries 1-2

We provide first a sketch of the proof of part (ii) of Theorem 1.

First of all the fact that V is strictly negative and of class C1 in R2
++ follows from the above

Proposition 3 and from the fact that (see Proposition 1-(i))

V (k, h) = hηV0(k/h), ∀k > 0, h > 0. (31)

Moreover, by (31) we immediately get

Vk(k, h) = hη−1V ′0(k/h), Vh(k, h) = ηhη−1V0(k/h)− khη−2V ′0(k/h), ∀k > 0, h > 0.

Hence, by straightforward computations, we get that G is homogeneous of degree 1 and

G(k, h) = hG0(k/h), ∀k > 0, h > 0. (32)

Take now k0 > 0, h0 > 0 and set z0 = k0/h0. Let z∗(·) be the solution of (18) and let

a∗(t) = G0(z
∗(t)) be the unique optimal control strategy for problem P̃ starting at z0 (as

follows from part (i) of Theorem 1). Then, Proposition 1-(ii) implies that c∗(t) := h∗(t)a∗(t),

where h∗(·) is the unique solution to (17), is the unique optimal control for problem P starting at

(k0, h0). Finally, using (32) we easily see that, setting k∗(t) := h∗(t)z∗(t), the couple (k∗(·), h∗(·))
is the unique solution of the closed loop system (20). This gives the final claim.

Now we provide a sketch of proof of Corollary 1. The proof goes along the same line of

the proof of [15, Theorem 5.5]. Differently from such theorem here we do not have concavity.

However here we can perform the same computations since we know that V ′0 is C1 using the

HJB equation (12) and the Implicit Function Theorem.

Finally we provide a sketch of proof of Corollary 2.

Let k0 > 0, h0 > 0, let c∗ be the unique optimal control strategy at (k0, h0) and let k∗, h∗ be

the associated state trajectories. To prove that the associated variables c∗

h∗ ,
ċ∗

c∗ ,
k∗

h∗ solve the

system (7)-(8)-(9) in [7] it is enough to perform straightforward computations using the state

equations and system (22). The initial conditions k(0) = k0, h(0) = h0 are obviously satisfied,

while c(0) = G(k0, h0) follows from Theorem 1-(ii)).

The fact that the paths c∗

h∗ ,
ċ∗

c∗ ,
k∗

h∗ converge to the steady state given in (10)—(13) in [7], follows

studying the asymptotic behavior9 of the optimal state-control paths (z∗, a∗) of problem P̃ and

9This is possible using the closed loop equation (18) and the feedback formula (19).
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then using that c∗

h∗ = a∗, k∗

h∗ = z∗ and ċ∗

c∗ = ȧ∗

a∗ + ρ(a− 1)10.

The final statement follows from the fact that the system (7)-(8)-(9) in [7] is saddle path stable,

hence when we start out of the stale manifold then the associated solution does not converge to

the steady state.

10This follows using that c∗ = a∗h∗ and equation (17).
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