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1. Introduction

A key issue in macroeconomics is determining the relationship between firm heterogeneity

and aggregate fluctuations.1 In this paper, we address the following question: does firm

selection along the extensive margin; namely, the decision of heterogeneous firms to produce

or exit upon entry, play an important role in enhancing the effect of aggregate technology

shocks. To provide an answer, we use a model of monopolistic competition and translog

preferences in which variations in measured total factor productivity (hereafter, TFP) depend

on the underlying distribution of firm-level productivity.

The novelty of our approach lies in expressing TFP as the combination of three effects:

firm selection (extensive margin), which we measure by the productivity of the marginal,

zero-profit firm; diminishing returns to new varieties, which is captured by the Herfindahl

index; and misallocation, which we relate to the use of factors across firms.2 We provide

new analytical results which characterize how the elasticity of the density function of firm

productivity relates to TFP. The diminishing returns and misallocation effects only operate

when the elasticity of the density function is strictly increasing or when firm-level produc-

tivity is bounded from above.3 Whilst firm selection magnifies the impact of aggregate

technology shocks on TFP, diminishing returns and misallocation both act to mitigate this

effect.

To provide intuition for our results, consider the case in which labor is the only productive

input and firm productivity has a Pareto distribution. A positive change in technology

1It is well-documented that there is a considerable amount of between-firm and between-plant heterogene-

ity, even within narrowly defined sectors of the economy. For example, see Bartelsman and Doms (2000)

and Syverson (2011).
2Diminishing returns to new varieties has also recently been emphasized by Feenstra and Weinstein (2017).
3For many distributions, such as the log normal, exponential, Fréchet, and Weibull, the elasticity of the

density function is strictly increasing. For the Pareto distribution, the elasticity of the density function is

constant.
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encourages firm entry because it raises profitable opportunities, whilst an increase in entry

makes it harder for the marginal, zero-profit firm to produce. Firm selection therefore leads

to higher average productivity. If the Pareto distribution is unbounded, product variety is

independent of aggregate technology because additional firm entry is exactly offset by a rise

in the probability of exit. In this case, the magnification of technology shocks arises from

reallocating labor to more productive firms.

A positive change in technology leads to a rise in product variety when firm productivity is

bounded from above and Pareto. This is because placing an upper bound on productivity

weakens the selection effect.4 An increase in product variety leads to crowding in the product

space, whereby the introduction of a new variety lowers the substitutability of all varieties.

Crowding reduces TFP, which, in this special case, is proportional to output.5 Thus,

bounding the productivity distribution affects the magnification of aggregate technology

shocks in two ways; it curtails the rise in the endogenous component of productivity, and it

also generates diminishing returns.

For the general version of our model we perform a simple quantitative exercise focusing on

two commonly used productivity distributions; bounded Pareto and log normal.6 For both

productivity distributions we consider, there is endogenous pro-cyclical firm entry, product

creation, and TFP. When we adopt a standard process for aggregate technology our analysis

suggests that around 20 percent of the variation in TFP can be attributed to firm selection.

4Feenstra (2018) contains a discussion on the importance of bounded and unbounded Pareto distributions

and our paper offers a natural extension of his analysis using the elasticity of the density function.
5In a model with homogenous firms, such as Bilbiie et al. (2012), when the number of varieties increases

goods become closer substitutes. In this case, a higher elasticity of substitution leads to a lower aggregate

markup. This result depends on the distribution of firm-level markups.
6By using a log normal distribution we allow for movements in the elasticity of the density function which

are absent with a Pareto distribution. Combes et al. (2012) show that the productivity distribution of

French firms is best approximated by a log normal distribution.
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The response of output is more than 50 percent higher than when firm entry and exit are

absent. Increased variation in output occurs because, in addition to variation in TFP, there

is an increase in the sensitivity of factor inputs (capital and labor). Overall, our results

suggest that firm heterogeneity and firm selection have quantitatively important implications

for business cycle analysis.

Within our framework, we also consider fluctuations in the aggregate markup, which is the

focus of numerous studies that seek to understand the link between firm entry and exit and

the business cycle. When firm productivity is Pareto distributed, the initial response of the

markup is around 0.3 percent, however, with a log normal distribution for firm productivity,

the response of the markup is considerably stronger. To gauge the empirical relevance

of our results, note that Rotemberg and Woodford (1991) estimate the elasticity of the

markup with respect to output to be around 0.2, and more recently, Hong (2017) finds that

firm-level markups have average elasticity of 0.9, with respect to real GDP. Our model

implies an elasticity (upon impact) of between 0.19 and 0.44, for the Pareto and log normal

distributions, respectively.

Translog preferences and the translog demand system have been successfully used in a num-

ber of different applications in macroeconomics. For example, Bilbiie et al. (2012) show

that, in a flexible-price model with endogenous dynamic firm entry, translog preferences gen-

erate countercyclical markups relevant for business cycle analysis.7 Lewis and Poilly (2015)

estimate a monetary version of this model with nominal rigidities to evaluate the cyclical

properties of the markup in the monetary transmission mechanism.8 Finally, closer to our

analysis, Rodriguez-Lopez (2011) develops an open economy monetary business cycle model

7Chatterjee and Cooper (1993) and Devereux et al. (1996) develop static models of firm entry with

monopolistic competition.
8Bergin and Feenstra (2000) examine the persistence in output that results from the interaction of mon-

etary shocks and nominal rigidities when the mass of firms is fixed and preferences are translog.
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with heterogeneous firms to study exchange rate disconnect, a major empirical puzzle in in-

ternational finance. Our focus is on selection and the distribution of firm-level productivity

for the magnification of technology shocks.

There are alternative approaches to studying the macroeconomic implications of endogenous

firm entry and exit with imperfect competition.9 Jaimovich and Floettoto (2008) consider a

model in which firms behave as oligopolistic competitors and show that endogenous markups

magnify shocks over the business cycle. Minniti and Turino (2013) develop a model with

multi-product firms and an intra-firm extensive margin along similar lines. Etro and Colci-

ago (2010) suppose that firms compete under either Bertrand or Cournot competition, with

endogenous dynamic firm entry, such that there are non-instantaneous zero profits. We

consider a model in which firms differ in their productivity. Firm-level markups are endoge-

nous and heterogenous and the extent of (pro-cyclical) movements in the aggregate markup

depend on the underlying distribution of firm-level productivity.10

Our analysis shares similarities with research that seeks to understand the impact of mis-

allocation on aggregate productivity. As Restuccia and Rogerson (2017) emphasize, misal-

location, which reflects the choice of how capital and labor are allocated among producers,

and selection, which reflects the choice of which producers should operate, are not indepen-

dent, and in our calibrated model both effects are present.11 Since we focus on the cyclical

implications of firm heterogeneity, our results also relate neoclassical models of the business

9Early contributions, such as Rotemberg and Woodford (1999), find that collusion can generate counter-

cyclical markups, while Gali (1994) reaches a similar conclusion with a model in which there are variations

in the composition of demand.

10Ottaviano (2012) develops a model with Pareto-distributed productive heterogeneity and monopolistic

competition which features pro- or countercyclical markups. de Blas and Russ (2015) focus on Bertrand

competition and the distribution of markups in an open economy.
11This aspect of our analysis is similar to Barseghyan and DiCecio (2011) who study the role of entry costs

in generating misallocation.
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cycle with firm dynamics, which typically feature a rich set of ex-post firm-level shocks. In

our model, heterogeneity in productivity is drawn ex-ante and is fixed, a simplification which

allows us to generate new analytical results.12

The rest of the paper is as follows. In section two we develop the model economy. In

section three we provide analytical results linking the distribution of firm-level productivity

with selection, diminishing returns and misallocation. In section four we present a simpli-

fied model which we use to develop intuition. In section five we present the quantitative

implications of our analysis. Section six concludes.

2. Model

This section outlines the model economy. The economy is populated by a continuum

of households with mass normalized to one. There is a representative household which

consumes a basket of goods and supplies labor. The household owns the capital stock

which it rents to firms. There is a large number of ex-ante identical firms that have the

option of paying f > 0 units of labor to enter the market. Upon entry, each firm obtains

a productivity level z ∈ (zmin, zmax), which is the realization of a random variable drawn

independently across firms. If the domain is unbounded, we assume that zmax = +∞.

2.1. Translog Preferences

The representative household has a symmetric translog expenditure function over a set of

differentiated goods,

ln (et) = ln yt + νt +
1

nt

∫
i∈∆

ln pt (i) di+
ζ

2nt

∫
i∈∆

∫
j∈∆

ln pt (i) [ln pt (j)− ln pt (i)] djdi (1)

where et is the minimum expenditure required to obtain the basket of goods yt. The set of

differentiated goods available to the household is denoted ∆ , where nt is the measure of ∆.

12Our focus on ex-ante heterogeneity is consistent with Melitz (2003). The alternative approach, in which

firms are hit by persistent shocks, ex-post, is developed in Hopenhayn and Rogerson (1993).
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The term pt (i) is the price of good i at time t. Finally, νt ≡ 1
2ζnt

captures the variety effect,

where the parameter ζ > 0 determines the substitutability between goods.

Proposition 1 Each firm produces a single good and faces a downward-sloped demand

curve. The demand for good i is yt (i) = [st (i) /ρt (i)] yt, where,

st (i) ≡ 1

nt
− ζ ln pt (i) +

ζ

nt

∫
j∈∆

ln pt (j) dj (2)

is the expenditure share on good i and ρt (i) ≡ pt (i) /Pt is the price of good i relative to the

consumer-based price index, denoted Pt.

Proof Apply Shephard’s Lemma to the equation (1). �

To understand the implications of Proposition 1 we define the reservation price as the max-

imum price charged for a good. Such a good will have zero expenditure share, st (i?) = 0,

with reservation price equal to, ln ρt (i?) = 1
ζnt

+ 1
nt

∫
j∈∆

ln ρt (j) dj, where the second term is

the average price across all goods. Using this result, we re-write the expenditure share for

good i as the ratio the price of good i to the reservation price, st (i) = −ζ ln [ρt (i) /ρt (i?)].

Finally, the elasticity of demand for good i - defined as εyt,pt (i) ≡ −∂ ln yt (i) /∂ ln pt (i) - is

1 + ζ/st (i), which implies firms with lower market share face more elastic demand.13

2.2. Production

Each firm produces a differentiated good under conditions of monopolistic competition by

hiring labor and renting capital. Firms have access to a constant returns to scale technology.

Given lt (i) workers and kt(i) units of capital, firm i produces,

yt (i) = atzt (i) [kt(i)]
α [lt (i)]1−α (3)

13Write the demand curve as, ln yt (i) = ln st (i)− ln pt (i) + lnPtyt, where, st (i) = ζ ln pt (i?)− ζ ln pt (i).

Differentiating, −∂ ln yt (i) /∂ ln pt (i) = ζ/ [ζ ln pt (i?)− ζ ln pt (i)] + 1, where the term in square bracket is

the expenditure share. The expenditure share is declining with price and the elasticity is increasing with

price.
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where at is a technology common to all firms and zt (i) is a firm-specific level of productivity.

The profit function is,

ϑt (i) = [ρt (i)−mct (i)] yt (i) (4)

where real marginal cost, denoted mct (i), is determined by the following cost minimization

problem; mct (i) = minkt(i),lt(i) [wtlt (i) + rtkt(i)], s.t. yt (i) ≥ 1, where wt is real wage and

rt is real cost of capital. We define mct ≡ w1−α
t rαt /at (1− α)1−α αα, such that mct (i) =

mct/zt (i).

Firms maximize profits, subject to the demand for their good, as defined in Proposition 1.

Proposition 2

1. The optimal price chosen by firm i, with productivity z, is,

ρt (z) = Ω

(
z

z?t
exp

)
mct
z

(5)

where Ωt ≡ Ω
(
z
z?t

exp
)

denotes the Lambert-W function and z?t is the zero-profit level of

firm productivity (cut-off), which indexes the reservation price, ρ?t = mct/z
?
t .

2. The market share and profit of firm i are,

s (z) = ζ

[
Ω

(
z

z?t
exp

)
− 1

]
(6)

and,

ϑ(z) = s (z) yt − φ(z) = s (z)

[
1− Ω−1

(
z

z?t
exp

)]
yt (7)

where s (z) yt is firm-level revenue (sales) and φ(z) = ζ
[
1− Ω−1

(
z
z?t

exp
)]
yt is the cost of

production.

Proof See Appendix. �
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The term Ω
(
z
z?t

exp
)

in Proposition 2 measures the gross firm-level markup. Firm-level

markups depend positively on the firm-specific productivity draw, z, and negatively on the

cut-off level of productivity, z?t , which is endogenous and depends on market conditions.

The least productive firm, which is defined as the firm with z = z?t , has zero markup,

since Ω (exp) = 1, and zero market share, s (z?t ) = 0. Equation (5) also implies that

more productive firm set higher markups and charge lower prices. Because markups are

heterogeneous across firms we observe that price pass-through (from an exogenous change

in marginal costs, mct) is also heterogeneous. An exogenous change in marginal cost has

two effects on prices; a direct effect and an indirect effect, via z?t . We follow Rodriguez-

Lopez (2011) in deriving a simple expression for pass-through and confirm that smaller, less

productive firms, which also have smaller market share, have smaller price pass-through.14

2.3. Firm Entry and Exit

There are a large number of ex-ante identical firms that have the option of hiring f > 0 units

of labor to enter the market. Each firm obtains a productivity level z ∈ (zmin, zmax) which

is the realization of a random variable drawn independently across firms from a distribution

G (z). Firm i enters if,

ϑt ≡
∫ zmax

z?t

ϑt [z (i)] dG (z) > (wt/at) f (8)

Firms endogenously enter the market until profits are zero net of the entry costs. Of the

mass Nt of firms entering the economy, the mass of products available to the household,

denoted nt, is equal to the mass of entrants, multiplied by the probability of successful entry,∫ zmax

z?t
dG (z) = 1−G (z?t ).

15

2.4. Aggregation

14We relegate the proof of this point to the Appendix.
15Our model of entry and exit is static, similar to, for example, Chatterjee and Cooper (1993) and

Jaimovich and Floetotto (2008).
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In this section, we present and discuss aggregate equations for the economy. Details of

the derivations are presented in the Appendix. Recall that market share is related to

productivity by, st (z) = ζ (Ωt − 1), where Ωt ≡ Ω
(
z
z?t

exp
)

. Aggregating total demand

(defined in Proposition 1) we can relate the mass of entrants, Nt, to the cut-off level of

productivity in the following way,

π1,t = 1/ζNt (9)

where we define π1,t ≡
∫ zmax

z?t
(Ωt − 1) dG (z). The parameter π1,t is the average markup

across all firms (that is, the net markup across successful and non-successful firms) and this

falls with firm entry. A key point of note is that a change in π1,t does not imply a change

in the aggregate markup in our economy, which is inversely proportional to product variety,

nt. Recall that the mass of available products is given by, nt = [1−G (z?t )]Nt, where

G′ (z?t ) > 0. The aggregate markup (i.e., the markup across successful firms) is defined as,

m (z?t ) ≡ π1,t/ [1−G (z?t )], and it cyclical behavior depends on the strength of firm selection.

The mass of firms is determined by the free entry condition,

π2,t = (wt/at)
f

ζyt
(10)

where π2,t ≡
∫ zmax

z?t

[
(Ωt − 1)2 /Ωt

]
dG (z) is derived from the aggregated profit function.

Given product demand and free entry, we use the optimal pricing decisions of firms (defined

in Proposition 2) to relate the mass of firms with the cut-off productivity level. In doing

so, we define the Herfindahl index in our economy - a commonly-used measure of market

concentration - as, H (z?t ) ≡ Nt
∫ zmax

z?t
[s (z)]2 g (z) dz, where s (z) is the market share of each

firm. This leads to,

ρ(z?t ) = mct(z
?
t )

= z?t exp

[
H (z?t )

2ζ

]
(11)
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where z?t > zmin and Nt
∫ zmax

z?t
s (z) g (z) dz = 1. This is an important equation in our

analysis. First, notice that the reservation price depends positively on the Herfindahl index,

and moreover, that price is only a function of the productivity cut-off. Second, equation

(11) implies εz?t ,mct > 0, which is discussed above in the context of price pass-through. It

is now clear that the size of this elasticity depends on the Herfindahl index and that the

specific relationship between the productivity cut-off and market concentration depends on

the underlying distribution of firm-level productivity. The Herfindahl index is integral to

the translog setting, since it will determine, along with the distribution of productivity,

the extend of crowding in the product space, whereby the entry of new products raises

substitutability of all products.

Labour is used for production and the creation of new firms, whereas capital is only used

for production. The total use of labor is, Lt = Nt
∫ zmax

z?t
lt (z) dG(z) + Nt (f/at), which we

express as,

wt =

(
π3,t

π1,t

)
yt
Lt

(12)

where π3,t ≡
∫ zmax

z?t
[(Ωt − 1) (Ωt − α) /Ωt] dG(z). Similarly, the aggregate stock of capital is,

Kt = Nt
∫ zmax

z?t
kt (z) dG (z), which we express as,

rt = α

(
π4,t

π1,t

)
yt
Kt

(13)

where π4,t ≡
∫ zmax

z?t
(1− 1/Ωt) dG (z). We note that the two-sector structure of our econ-

omy introduces a simple asymmetry which is also present in the analysis of, for example,

Barseghyan and DiCecio (2011).16 In our case, there is an endogenous wedge that de-

pends on the value we assign to α < 1, which determines the fraction of capital used in the

production of goods for consumption - see equation (3).

16In Barseghyan and DiCecio (2011), labor is used for production and overhead costs, and overheads

determine the cut-off level of productivity. Our model does not feature a fixed production cost and the

productivity cut-off is determined by the existence of a choke-price.
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2.5. Representative Household

The representative household has the following lifetime utility function,

E0

∞∑
t=0

βtu (ct, Lt) (14)

where ct is consumption (see equation (1)) and Lt is labor supply. Households maximize

lifetime utility subject to the following constraints,

ct + it = wtLt + rtKt and it = Kt+1 − (1− δ)Kt (15)

where kt (rt) is the stock (rental rate) of capital and wt is the wage rate. This leads to

standard conditions which characterize savings and labor supply decisions,

uc (t) = βEtuc (t+ 1) [rt+1 + (1− δ)] and wt = −uL (t) /uc (t) (16)

where uc (t) is the period t marginal utility with respect to the consumption and similarly

for uL (t).

2.6. Model Summary

Table 1 presents a summary of the equations that solve the model economy.

===== Table 1 Here =====

The nine equations in the middle column of Table 1 solve for the variables {it, Kt+1, ct, yt, Lt}

and {wt, rt} and {z?t ,Nt}. The first 5 equations are associated with auxiliary variables; πi,t-

definitions, the Herfindahl index, Ht = H (z?t ), and the markup, mt = m (z?t ). The final 4

equations are standard conditions describing the optimal choice over savings and labor supply

along with resource constraints. It is worth noting that the mass of available products, nt,

does not appear explicitly in our system of equations. If we know the mass of entrants (Nt,
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from the free entry condition) and the productivity cut-off (defined by the reservation price),

product variety is determined. This feature of our model is associated with the translog

expenditure system.

3. Analysis

In this section we do two things. First, we prove that there is a solution for the productivity

cut-off, z?t > zmin, for a general class of truncated distributions. Second, we discuss the prop-

erties of average productivity, the Herfindahl index, the aggregate markup, and measured

TFP, all of which feature in our discussion below.

3.1. Distributional Properties and Productivity Cut-Off

Lemma 1 and Lemma 2 establish important properties of aggregate variables in our economy.

Lemma 1 Let G (z) be the CDF of z, bounded by zmax ≤ +∞. For any function,

J (z?t ) =
∫ zmax

z?t
j
(
z
z?t

)
dG (z), where j (1) ≥ 0 and j′ ≥ 0, then, (i), J ′ (z?t ) < 0, and (ii),

lim
z?t→zmax

J (z?t ) = 0.

Proof See Appendix. �

Lemma 1 implies that auxiliary variable πi,t for i = 1, .., 4 are decreasing functions of z?t .

From product demand, equation (9), we can now confirm that firm entry and the productivity

cut-off have a positive relationship.

Lemma 2 Make the change of variables, u = z/z?t . Let g (ut) be a density function with

elasticity,

ε (ut) = −utg
′ (ut)

g (ut)
(17)

which is weakly increasing. Let j1 (ut) and j2 (ut) be positive functions such that j1(ut)
j2(ut)

is strictly increasing. The ratio
J1(z?t )

J2(z?t )
is a decreasing function of z?t , where Ji (z

?
t ) =∫ zmax

z?t
ji (u) g (z) dz, for i = 1, 2.

13



Proof See Appendix. �

Equation (17) holds for all well-known distributions, with one important exception, the

Pareto distribution, which features a constant elasticity, equal to one plus the shape param-

eter. Nevertheless, the result of Lemma 2 is correct for the bounded Pareto distribution

(zmax < +∞), and in what follows, we will assume the distribution of productivity is such

that it satisfies Lemma 2 or it is Pareto. In fact, Lemma 2 also shows us why the unbounded

Pareto distribution is a special case. Whereas the majority of aggregators move with the

productivity cut-off, z?t , in the unbounded Pareto case, they are fixed. Feenstra (2018)

contains a discussion on bounded and unbounded Pareto distributions, and our paper offers

a natural extension of his analysis using the elasticity of the density function, ε (ut).

We can now investigate firm entry and assess the factors affecting the productivity cut-off.

In Proposition 3, we establish the existence of a solution for z?t .

Proposition 3 Define zmin as the infimum of the domain for the distribution function G (z).

An internal solution, z?t > zmin to,

π3,t

π2,t

1

π1,t

=

(
ζ

f

)
atLt (18)

exists if and only if
[
π2,t(zmin)

π3,t(zmin)

]
π1,t(zmin) >

(
f
ζ

)
/atLt and if condition (17) is satisfied.

Proof Combining free entry with the factor price equation for wages and product de-

mand generates equation (18). Lemma 1 implies that π1,t is a decreasing function and

lim
z?t−→zmax

π1,t = 0. Lemma 2 implies that the ratio π2,t
π3,t

decreases with z?t . Therefore, the

solution to (18) exists and it is unique. �

Proposition 3 shows that the productivity cut-off exists for any set of parameter values

when zmin = 0. This rests on the fact that π2,t > π3,t, for any z, and that if zmin = 0,

then lim
z?t−→∞

π1,t = +∞, a proof of which is presented in the Appendix. In the case of the

14



Pareto distribution - commonly used in the analysis of models with firm-level heterogeneity

- a solution exists as long as entry costs are not too large, and if not, all firms that enter

produce, with z?t → zmin. An important implication of Proposition 3 is that, if z?t exists, it

is positively related to the total supply of labor, Lt.
17 By Lemma 1, firm entry and labor

supply are also positively related.

3.2. Productivity, the Herfindahl Index, and Markup

In this section, we discuss the properties of average productivity, the Herfindahl index, the

aggregate markup, and measured TFP.

Proposition 4 Average productivity, defined as zt = 1
1−G(z?t )

∫ zmax

z?t
zdG (z), increases with

total labor supply. The Herfindahl index, Ht, defined in equation (11), decreases with total

labor supply. The aggregate markup, defined as mt ≡ π1,t
1−G(z?t )

, decreases with total labor

supply.

Proof Recall, 1 − G (z?t ) =
∫ zmax

z?t
dG(z). Lemma 2 implies that the Herfindahl index and

average markup decline with the cut-off and Proposition 3 implies that z?t increases with

total labor supply. �

It is also interesting to observe that the share of capital and labor depend on the productivity

cut-off. Recall that wtLt
yt

= π3,t
π1,t

and rtKt
yt

= απ4,t
π1,t

. The labour share is larger than (1 − α)

because labor is used for entry, whilst the share of capital is also larger than α.18 Lemma

2 allows us to establish that when z?t increases, the labor share, π3,t/π1,t, declines. This

is because the amount of labor used for entry grows more slowly than employment in the

production sector. Contrarily, the share of capital, π4,t/π1,t, increases with z?t . Thus, as

17Applying implicit function theorem, we have
dz?t

d(ζL/f) = π1/
∂
∂z?t

(
π3,t

π2,t
− ζLt

f π1,t

)
> 0, for at = 1.

18For the former, π3,t − (1− α)π1,t = απ2,t > 0, and for the latter, π4,t − π1,t = π2,t > 0.
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z?t rises, the utilization of labor increases, whilst the utilization of capital declines. These

ratios are constant when we assume productivity has an unbounded Pareto distribution.

We can also use Lemma 2 to characterize measured TFP, defined as, TFPt ≡ yt/K
α
t L

1−α
t .

Proposition 5 Measured TFP is,

TFPt = (atmct)Zt (19)

where Zt ≡ (1−α)1−α

π1−α
3,t πα4,t

π1,t is a decreasing function of z?t and mct is defined in equation (11).

Proof See Appendix. �

Measured TFP consists of three terms. The first two terms depends on marginal cost,

mct = z?t exp (Ht/2ζ). The first part is the productivity cut-off, z?t , which increases with

labor supply. The second part, the Herfindahl index, is related to crowding in the product

space, or diminishing returns to new varieties, as discussed in Feenstra and Weinstein (2017).

The final term, Zt, is defined through the demand for capital and labor (see equation (12) and

(13)) and we refer to this as misallocation. Since the second and third terms (diminishing

returns and misallocation), in general, are decreasing functions of z?t , we already know that

these mute any change of productivity onto measured TFP.

4. Mechanism in a Special Case

In this section, we present analytical results for a simplified version of our model. At this

point it is worth stressing the focus of our analysis: we are interested in characterizing

aggregate outcomes conditional on the selection effect. The strength of selection depends

on the distribution of firm-level productivity.

4.1. The Model with a Fixed Stock of Capital

16



We assume the aggregate capital stock is fixed and α→ 0. This implies, π1,t = π3,t, such that

the free entry condition, as presented in Table 1, can be written as, π2,t = f/at
ζLt

. In this case,

the wage rate for the economy is simply, wt = yt
Lt

, which is consistent with TFPt = atmct

and Zt ≡ 1. We also assume utility is logarithmic in consumption. Given the economy-

wide resource equation, this implies, −LtuL (t) = 1, such that the total supply of labor is

unaffected by aggregate technology, and so we set Lt = 1. If we now re-consider the free

entry condition, a rise in aggregate technology, at, lowers π2,t, and since π2,t is declining in

z?t , we can immediately conclude that aggregate technology and the productivity cut-off have

a positive relationship. Thus, a positive shock to technology raises average productivity,

zt = 1
1−G(z?t )

∫ zmax

z?t
zdG (z).

Combining the pricing equation with resources we solve for output as a function of the

productivity cut-off in the following way.

yt = TFPt and π2,t =
f/at
ζ

(20)

A change in at has a direct and indirect effect on output. The indirect effect is reflected in

the change in z?t , the strength of which is controlled by the free entry condition, which is the

second equation in (20). The explanation for the impact of a change in the productivity

cut-off on output (measured TFP) is a selection effect - which relates to z?t - and crowding

in the product space - which relates to the Herfindahl index, Ht. Feenstra and Weinstein

(2017) discuss how changes the Herfindahl index relate to crowding in the product space

when there are translog preference. The term crowding refers the to the idea that, with a

lower Herfindahl index, new varieties are more substitutable and, therefore, less desirable.

All else equal, when the Herfindahl index falls so does the demand for goods, and therefore,

total output.

Proposition 4 also allows us to link the results for output to the aggregate markup. A

positive technology shock encourages firm entry and leads to a lower aggregate markup.
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Despite the similarities, our results differ from, for example, Bilbiie et al. (2012) and Etro

and Colciago (2010), where an aggregate technology shock also leads to increased firm entry

(and, by definition, greater product variety) and a lower markup. In our model, whilst there

is more entry, the fraction of successful entrants falls, and this affects product variety. As

the product space becomes more crowded the Herfindahl index falls. We relate these factors

to the productivity cut-off and the strength of firm selection.

4.2. Bounded Pareto Distribution

In this section we assume firm productivity is Pareto distributed.19 In general, there are

two effects from our distributional assumptions: we refer to these as bounding and elasticity

effects. The elasticity effect depends on the shape of the distribution, characterized through

the elasticity of the density, ε (ut), which, in general, is a weakly decreasing function. The

Pareto assumption implies a constant elasticity. The bounding effect, is controlled by zmax,

and a lower value for zmax (i.e. lowering the upper bound of the distribution) curtails the

selection effect because it alters the reallocation of labor to the most productive firms.

When firm-level productivity is Pareto,

G (z) =
1− z−κ

1− z−κmax

and ε (u) = k + 1 (21)

where zmin = 1 and k > 0 is the shape parameter. Although Lemma 2 does not apply to

the Pareto case, there is a unique solution for z?t > 1, and we have following result.

Corollary When productivity is Pareto distributed with shape parameter κ,

π̂i,t = − (κ+ ζi) ẑ
?
t (22)

for i = 1, .., 3 and where a caret denotes the log deviation of a variable from its steady-state

value. The parameters ζ3 > ζ2 > ζ1 > 0 and for zmax →∞, ζi → 0, for all i.

19We use a Pareto distribution in this section for analytical convenience and comparability with other

studies. The Pareto assumption is by far the most popular assumption over firm-level productivity.
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When firm productivity is distributed Pareto, the multipliers of the auxiliary variables de-

pend on the shape parameter and ranked composite parameters, all of which decline with

zmax.

We summarize the response of productivity to an aggregate technology shock as,

ẑ?t =

(
1

κ+ ζ2

)
ât and ẑt = φ (z?)

(
1− z?

z

)
ẑ?t (23)

where φ (z?) ≡ g(z?)z?

1−G(z?)
= κ

1−(z?/zmax)κ
> 0 is the log hazard ratio. A rise in technology leads

to a higher productivity cut-off and a higher average level of productivity. As the upper

bound of the distribution, zmax, rises, the cut-off productivity is more sensitive to the shock

because labor is reallocated to increasingly more productive firms.

The output response to a change in technology is,

ŷt = ât + m̂ct

=

{
1 +

1

κ+ ζ2

[
1 +

ζ1 − ζ3

2

(
H

ζ

)]}
ât (24)

There are competing forces that explain the response of output in equation (24). Me-

chanically, there are two reasons the sensitivity of output lowers as the upper bound of the

productivity distribution falls. First, the selection effect is weaker, as in equation (23), and

thus the response of z?t is smaller. Second, the Herfindahl index falls with z?t because there

is an increase in product variety. These are the selection and crowding effects described

above.

Finally, we very briefly consider the case, zmax → ∞, where ẑ?t = ẑt = 1
κ
ât and ŷt =(

1 + 1
κ

)
ât. When the productivity distribution is unbounded, a positive change in aggregate

technology encourages firm entry (i.e., N̂t > 0), the strength of selection leads to no change

in product variety, n̂t = − [φ (z?)] ẑ?t +N̂t = 0, and no change in the markup. It is instructive

to consider what happens as κ falls and variance of the productivity distribution rises. As κ
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falls, the average markup rises, as does the Herfindahl index.20 In this case, there are fewer,

very productive firms, and output is more sensitive to aggregate technology shocks.

5. Quantitative Exercise

In this section, we present a quantitative analysis of the model. We assume a standard

form for utility, u (ct, Lt) = ln ct − χ
1+ν

L1+ν
t , where 1

ν
is the Frisch elasticity, and we consider

two commonly used distributions for firm-level productivity: a bounded Pareto distribution,

G (z; zmax, κ), introduced and discussed above, and an unbounded log normal distribution,

G (z;µ, σ), where µ (σ) is the location (scale) parameter.

5.1. Calibration

Our calibration strategy is the following. We start by picking some standard parameter

values. In particular, we assume that a period in the model is a year and β = 0.96 and

δ = 0.1. These parameters determine the risk-free rate and rental rate of capital. We

normalize aggregate technology to a = 1, set the parameter that determines the capital used

in production of goods at one third, so α = 1/3, we assume the Frisch elasticity is 0.72, a

value suggested by Heathcote et al. (2010), and that individuals spend a third of their time

in work, so L = 1/3. The remaining parameters of the model are calibrated to steady-state

targets.

Table 2 presents all parameters used to characterize the steady-state and their respective

targets.

===== Table 2 Here =====

20The markup is given by, m = κ
{∫∞

1
(Ω− 1)u−κ−1du

}
. If firms are (approximately) homogeneous

in productivity (κ → ∞), the average markup approaches zero. This particular case is also studied in

Rodriguez-Lopez’s (2011) monetary model of an open economy.
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Based on Davis et al. (2006) we assume that the failure rate of firms is 14 percent. We then

set the the shape parameter of the Pareto distribution at κ = 1.653 following the analysis

of Nigai (2017; Table 9; ‘variable markups’). Since the translog parameter, ζ > 0, acts to

scales the mass of firms, we normalize it to unity, and we use zmax - the truncation in the

distribution - to achieve an aggregate markup of 23 percent.21 This calibration implies a

share of physical investment in GDP of 17.4 percent and a Herfindahl index of 3789. The

former is close to values for the US, whereas the latter is somewhat higher than typical

concentration ratios. When we assume firm productivity is log normally distributed, we

leave the distribution unbounded, but ensure our economies have the same average markup

and average productivity. To do this, we set σ = 0.321 to hit the markup of 23 percent.

We then set µ = 0.445 so that we achieve z = 1.76 (which is the outcome when firm

productivity is Pareto distributed). With a log normal distribution of firm productivity the

share of physical investment in GDP is 18 percent and the Herfindahl index is 3214.

5.2. Impulse Responses and Second Moments

Technology shocks are the only source of aggregate uncertainty in our model. We assume

aggregate technology follows an AR(1) process such that,

ât = ρât−1 + êt

We set ρ = 0.9794 and σe = 0.0072×
√

4 consistent with King and Rebelo (1999).

Figure 1 plots Impulse Response Functions of selected variables for a 1 percent positive

innovation to technology. The two sets of dashed lines are the model with firm heterogeneity,

for the different productivity distributions, and the solid (black) lines are generated from a

benchmark RBC model, using the same calibration as outlined above.22 The vertical axis

21When we allow zmax →∞ the markup rises to 34.1 percent.
22Since this version of the model is entirely standard we omitted the details.
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is the percentage deviation from the steady state and the number of years after the shock is

reported on the horizontal axis.

===== Figure 1 Here =====

We first consider standard variables - depicted in the two upper rows. It is clear that, in

both cases, i.e., with a bounded Pareto or a log normal distribution, there is a significant

amplification from firm selection: the rise in aggregate output generated from the shock to

productivity is around 50 percent higher than the benchmark model. This is the result of

both consumption and investment in physical capital rising considerably more when firms are

heterogeneous. Consistent with this pattern of magnification, factor prices are considerably

more sensitive to the shock.

The third row of figure 1 depicts those variables specific to the model with selection. Consider

measured TFP (TFPt), which Proposition 5 decomposes into three separate terms. When

the productivity distribution is Pareto (log normal), the initial change in the productivity

cut-off is 0.84 (0.4) percent, whereas the response of the Herfindahl index (not reported) is

−0.30 (−0.46) percent. The remaining change in measured TFP derives from changes in

the utilization of factors. In general, these results suggest that around 20 percent (22, in the

case of Pareto and 16, in the case of log normal) of the variation in measured TFP can be

attributed to firm selection. Recall, firm selection magnifies the effect of technology shocks

over the business cycle because factor inputs become sensitive. Moreover, despite bounding

the Pareto distribution from above, the impact of a change in technology onto measured

TFP is larger than when firm-level productivity is distributed log normal.

Our model also feature pro-cyclical firm entry and a counter-cyclical markup. As we discuss

above, in this sense, our model is similar to, for example, Jaimovich and Floetotto (2008)
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and Etro and Colciago (2010). In the former, a 1 percent shock to technology generates a

fall in the markup of around 0.30 percent, and in the latter, the movement in the markup is

twice as large. With a Pareto distribution, the initial response of the markup is somewhere

in between these values at 0.15 percent, whereas the markup response with log normally

distributed productivity is much stronger. Empirically, whilst Rotemberg and Woodford

(1991) estimate the elasticity of the markup with respect to output to be around 0.2, more

recently, Hong (2017) finds that firm-level markups have an average elasticity of around 0.9.

Our model implies and elasticity (upon impact) of between 0.19 and 0.44.

To further evaluate the properties of our model, we compute the second moments of aggregate

variables. Table 3 presents the moments for the three cases presented above.

===== Table 3 Here =====

The results in Table 3 show that the entry and exit of heterogeneous firms, in our model,

generates improvements relative to the benchmark RBC setting, consistent with the impulse

responses reported in Figure 1. In all cases, despite the Pareto distribution being bounded,

and the selection effect mitigated (relative to zmax → +∞), it performs marginally better in

terms producing movements in output, consumption, and physical investment closer to the

data. The model necessarily fails to produce enough volatility in hours worked, but given

the empirically relevant Frisch elasticity we assume, this is not surprising. Finally, although

the volatility of output is considerably higher than that reported for the RBC model this is

not only attributable to changes in TFP but also to variation in inputs.

6. Conclusion

This paper studies the macroeconomic implications of firm selection. We provide analytical

results that show how firm selection is related to the underlying distribution of firm-level
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productivity. Selection, diminishing returns to new varieties (crowding in the product

space), and misallocation all relate to measured TFP. We use this result to connect the

magnification of aggregate technology shocks, via the extensive margin, with the elasticity

of the density function of firm productivity. Although diminishing returns and misallocation

act to dampen the magnification of aggregate technology shocks, the reallocation of resources

to relatively more productive firms generates quantitatively important variations in output.
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Appendix A

In this Appendix we present proofs for Lemmas and Propositions not reported in the text.

A.1. Proof of Proposition 2

The cost minimization problem for firm i is,

min
kt(i),lt(i)

[wtlt (i) + rtkt(i)] + λt
{
yt (i)− atzt (i) [kt(i)]

α [lt (i)]1−α
}

(25)

where λt is a Lagrange multiplier. This implies, lt (i) = [(1− α) /α] (rt/wt) kt(i), and

so, wtlt (i) + rtkt(i) = (rt/α) kt(i) = [yt (i) /atzt (i)]w1−α
t rαt /ψ, where ψ ≡ (1− α)1−α αα.

Marginal cost is,

mct (i) =
∂

∂yt(i)
[wtlt (i) + rtkt(i)] =

mct
zt (i)

; mct ≡
1

at

w1−α
t rαt
ψ

(26)

The profit maximization problem for firm i is to maximize,

max
ρt(i)

[
ρt (i)− mct

zt (i)

]
yt (i)− µt [ρt (i) yt (i)− st (i) yt] ; st (i) = −ζ ln

ρt (i)

ρ (z?t )
(27)

where ρt (i) yt (i) = st (i) yt is the demand for good i and µt is a Lagrange multiplier. This

implies,

ρt (i) yt (i) = ζ

[
zt (i) ρt (i)

mct
− 1

]
yt (28)

We use ρt (i) yt (i) = st (i) yt and (27) to rewrite (28) as, − ln ρt(i)
ρ(z?t )

=
[
zt(i)ρt(i)
mct

− 1
]
, or,

zρt (z)

mct
= ln

[
ρ (z?t )

ρt (z)
exp

]
and ρ (z?t ) =

mct
z?t

which implies, zρt (z) /mct = − ln [ztρt (z) /mct] + ln
(
zt
z?

exp
)
. We then use the Lambert-W

function - which implies ln Ω
(
zt
z?

exp
)

+ Ω
(
zt
z?

exp
)

= ln
(
zt
z?

exp
)

- to rewrite this equation

as,

zρt (z)

mct
= Ω

(
zt
z?t

exp

)
(29)
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which produces equation (5) in Proposition 2. To derive equation (6) in Proposition 2, note

that, by definition, s (z?t ) = 0. Applying this to the condition for the expenditure share

implies,

0 =
1

nt
+ ζ

[
1

nt

∫
ln pt (j) dj − ln p (z?t )

]
→ ζ ln p (z?t ) =

1

nt
+ ζ

[
1

nt

∫
ln pt (j) dj

]
Re-inserting this expression,

st (z) = ζ [ln p (z?t )− ln pt (z)] = ζ

[
ln
pt (z?t )

pt (z)

]
= ζ

[
ln

z

z?t
− ln Ω

( zt
z?

exp
)]

= ζ

[
ln

(
z

z?t
exp

)
− ln Ω

( zt
z?

exp
)
− 1

]
= ζ

[
Ω
( zt
z?

exp
)
− 1
]

(30)

which implies, s (zt) = ζ
[
Ω
(
zt
z?t

exp
)
− 1
]
. Finally, for equation (7), we use, ϑt (i) =

[ρt (i)−mct (i)] yt (i). Combining with the price equation, ρt (i) = Ωt
mct
zt(i)

, and the defini-

tion for marginal costs, mct (i) = mct
zt(i)

, we have, πt (z) =
(

1− 1
Ωt

)
st (z) yt, where Ωt ≡

Ω
(
zt
z?

exp
)

The demand curve for a good produced by a firm with productivity z is,

st (z) yt = ρt (z) yt (z), which implies, ϑt (z) = (Ωt − 1)
(

1− 1
Ωt

)
ζyt.

In the text, we also claim that the elasticity of price with respect to marginal costs decline

with firms’ productivity. Here we prove that claim. First, define ut ≡ z/z?t and write the

price as ρt (u) = Ωt (u exp)mct/uz
?
t .

ερt,mct(u) =
d ln ρt (u)

d lnmc
=

{[
∂Ωt (u exp)

∂ lnu
− 1

]
∂ ln (u)

∂ ln z?t
− 1

}
∂ ln z?t
∂ lnmc

+ 1

= 1−Υ (ut)×
∂ ln z?t
∂ lnmc

< 1

where Υ (u) ≡ ∂ ln Ω(u exp)
∂ lnu

= ∂
∂u

Ω (u exp) u
Ω(u exp)

= [1 + Ω (u exp)]−1 < 1 and ∂ ln(u)
∂ ln z?t

= −1 and

∂ ln z?t
∂ lnmc

> 0. By direct differentiation,

d

du
Υ (u) = − Ω′ (ut exp)

[1 + Ω (u exp)]−2 < 0 (31)

Therefore d
du
ερt,mct(u) > 0, which implies larger, more productive firms (i.e., higher ut) have

greater price pass-through. Rodriguez-Lopez (2011) refers to this case as the exact translog

case.

26



A.2. Proof of Lemma 1 and 2

For Lemma 1, make the change of variables, u = z/z?t . Totally differentiating, J ′ (z?t ) =

−j(1)g (z?t )− 1
(z?t )2

∫ zmax

z?t
zj′
(
z
z?t

)
dG (z) < 0. Consider the integral J (a) =

∫ zmax

a
j
(
z
a

)
dG (z),

where a > 0 is any number. Since the integral exists, for any ε > 0, there should exist

k(ε, a) > a, such that
∫ zmax

k(ε,a)
j
(
z
a

)
dG (z) < ε. Since j′ ≥ 0, and k(ε, a) > a, it is true that

j
(
z
a

)
> j

(
z

k(ε,a)

)
and

∫ zmax

k(ε,a)
j
(

z
k(ε,a)

)
dG (z) <

∫ zmax

k(ε,a)
j
(
z
a

)
dG (z) < ε. This completes the

proof.

Now let g(u) be any PDF and j1 (u) and j2 (u) two positive increasing functions defined at

the same domain. Let g (u) be a density function such that it’s elasticity,

ε (u) = −ug
′ (u)

g (u)
(32)

is weakly increasing. Let j1 (u) and j2 (u) be positive functions such that j1(u)
j2(u)

is strictly in-

creasing. The ratio
J1(z?t )

J2(z?t )
is a decreasing function of z?t , where Ji (z

∗) =
∫ zmax

z∗
ji
(
z
z∗

)
g (z) dz.

To prove this statement, we start by using the following substitution u = z
z∗

, which implies

Ji (z
∗) = z∗

∫ zmax/z?t
1

ji (u) g (z?t u) du. We differentiate this as,

J ′i(z) =
Ji(z

?
t )

z?t
− zmax

z?t
ji (zmax/z

?
t ) g (zmax) +

zmax/z?t∫
1

ji (u) (uz?t ) g
′ (z?t u) du (33)

Now consider the ratio,

J (z?t ) = (J2 (z?t ))
2 d

dz?t

[
J1 (z?t )

J2 (z?t )

]
= J ′1 (z?t ) J2 (z?t )− J1 (z?t ) J

′
2 (z?t )

=

J1(z?t )

z?t
− zmax

z?t
j1

(
zmax

z?t

)
g (zmax) +

zmax/z?t∫
1

j1 (u) (uz?t ) g
′ (z?t u) du

 J2 (z?t )

−

J2(z?t )

z?t
− zmax

z?t
j2

(
zmax

z?t

)
g (zmax) +

zmax/z?t∫
1

j2 (u) (uz?t ) g
′ (z?t u) du

 J1 (z?t )
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therefore,

J (z?t ) =

zmax/z?t∫
1

j2 (u) g (uz?t ) du

zmax/z?t∫
1

j1 (u) g (uz?t )

[
uz?t g

′ (uz?t )

g (uz?t )

]
du

−
zmax/z?t∫

1

j1 (u) g (uz?t ) du

zmax/z?t∫
1

j2 (u) g (uz?t )

[
uz?t g

′ (uz?t )

g (uz?t )

]
du

+zmaxg (zmax)

zmax/z?t∫
1

j1 (u) g (uz?t ) j2

(
zmax

z?t

)
du


−zmaxg (zmax)

zmax/z?t∫
1

j2 (u) g (uz?t ) j1

(
zmax

z?t

)
du

 (34)

We consider the terms in the first two lines and the final two lines of equation (34) separately.

The sign of the first two lines can be written as,

zmax/z?t∫
1
ε(uz?t )j2 (u) g (uz?t ) du

zmax/z?t∫
1
j2 (u) g (uz?t ) du

−

zmax/z?t∫
1
ε(uz?t )j1 (u) g (uz?t ) du

zmax/z?t∫
1
j1 (u) g (uz?t ) du

(35)

where ε(z) = − zg′(z)
g(z)

. Now consider CDFs defined as,

Gi(u) =

∫ u

−∞
gi (y) dy =

y∫
1
ji (u) g (uz?t ) du

zmax/z?t∫
1
ji (u) g (uz?t ) du

for i = 1, 2; 1 < y < zmax/z
?
t

Damjanovic (2005) shows (formula 3) that if j1(u)
j2(u)

is an increasing function of u then, G1(u) <

G2(u). This further implies that for any weakly increasing function ε(u),∫ +∞

−∞
ε(u)g1(u)du >

∫ +∞

−∞
ε(u)g2(u)du (36)

and (35) is negative if ε(u) is increasing.

The sign of the second two lines in (34) can be written as,

zmax/z?t∫
1

[
j1 (u) j2

(
zmax

z?t

)
− j2 (u) j1

(
zmax

z?t

)]
g (uz?t ) du (37)
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However, as j1/j2 is an increasing function, for any u < zmax

z?t
, then j1(u)

j2(u)
<

j1

(
zmax
z?t

)
j2

(
zmax
z?t

) , and the

integral in equation (37) is negative. In this case, so is the final term in equation (34).

Here we note that the first two lines of equation (34) and the term in equation (35) equals

zero for Pareto distribution. For a Pareto distribution, ε (u) = k + 1, where k > 0 is

the shape parameter, and the ratio
J1(z?t )

J2(z?t )
is constant. The final line of equation (34) is

negative for any truncated distribution including truncated Pareto. For a truncated Pareto

distribution, or any other truncated distribution which satisfies (32),
J1(z?t )

J2(z?t )
is a decreasing

function of z?t .

A.4. Proof of Proposition 5

We need to prove that the following function is increasing,

Z (z?t ) =

[
π3,t

π1,t

(1− α)

]1−α(
π4,t

π1,t

)α
First, note that, απ4,t = π1,t − π3,t, such that the factor prices can be written as,

lnZ (z?t ) = (1− α) lnπ + α ln(1− π) + Σ

where we define π = π3,t
π1,t

and Σ = ln
[
(1− α)1−α (1/α)α

]
. Differentiating,

d

dz?t
lnZ (z?t ) =

(
1− α
π
− α

1− π

)
π′ =

π′

π (1− π)
[(1− α)− π]

Lemma 2 implies that π′ and so,

[(1− α)− π] =
1

π1,t

[(1− α) π1,t − π3,t]

=
1

π1,t

{∫ zmax

z?t

Ωt − 1

Ωt

[(1− α) Ωt − (Ωt − α)] dG (z)

}

= − α

π1,t

[∫ zmax

z?t

(Ωt − 1)2

Ωt

dG (z)

]
< 0
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This completes the proof.

A.5. Corollary

The proof follows immediately from Lemma 2 which implies that the ratio π1,t
π2,t

is an increasing

function of z?t for a truncated Pareto. This implies that π̂1,t > π̂2,t, and similarly, π̂2,t > π̂3,t,

where a caret denotes the log deviation of a variable from its steady-state value. Thus,

π̂1,t > π̂2,t > π̂3,t also implies ζ3 > ζ2 > ζ1.

To complete the proof we show that ζ1 > 0. Recall, π1,t =
∫ zmax

z?t

[
Ω
(
z
z?t

exp
)
− 1
]
g (z) dz.

Using u = z/z?t , we write this as, π1,t = z?t
∫ zmax/z?t

1
(Ωt (u exp)− 1) g (uz?t ) du, where g (uz?t ) =

κ
1−z−κmax

(uz?t )
−1−κ, and so,

π1,t =
κ (z?t )

−κ

1− z−κmax

∫ zmax/z?t

1

(Ωt − 1)u−1−κdu.

Now consider the log deviation of π1,t,

π̂1,t =
∂π1,t

∂z?t

z?

π1,t

ẑ?t =

(
−κ− κ (z?t )

−κ

1− z−κmax

Ω− 1

(zmax/z?t )
κ

1

π1,t

)
ẑ?t = − (κ+ ζ1) ẑ?t

ζ1 ≡
Ω (zmax/z

?
t × exp)− 1∫ zmax/z?t

1
[Ω (u exp)− 1]u−1−κdu

(zmax/z
?
t )
−κ > 0 (38)

This completes the proof.
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Appendix B

In this Appendix we present additional details for the aggregated equations in Section 2.4

of the main text.

B.1. Allocations and Factor Prices

The demand curve for good i is ρt (i) yt (i) = st (i) yt, where st (i) is defined in Proposi-

tion 2 and is the expenditure share. We can write the optimal price equation for firm

with productivity zt (i) in terms of the expenditure share or the Lambert-W functions, as,

ρt (i) =
[
1 + st(i)

ζ

]
mct
zt(i)

or ρt (i) = Ω
(
zt
z?

exp
)
mct
zt(i)

, as described used in Proposition 1. The

relationship between st (i) and Ω
(
zt
z?

exp
)

is,

st (z) = ζ (Ωt − 1) where Ωt ≡ Ω
( zt
z?

exp
)

(39)

for all i. This expression is reported in Proposition 2 and we use it repeatedly in generating

aggregate conditions.

We start with the demand curve. Aggregating over z > z?t , we have,∫ zmax

z?t

ρt (z) yt (z) dG (z) = ζyt

∫ zmax

z?t

(Ωt − 1) dG (z)

⇔ 1 = ζNt

[∫ zmax

z?t

(Ωt − 1) dG (z)

]
(40)

where Nt is the mass of entrants. This is equation (9) in the main text. Now consider the

profit function, which we write as, πt (z) = (Ωt − 1) (1− 1/Ωt) ζyt. The free entry is such

that, Eϑt (z) ≡
∫ zmax

z?t
ϑt (z) dG (z) = wt (f/at), and in this case,

ζ

[∫ zmax

z?t

(Ωt − 1) (1− 1/Ωt) dG (z)

]
yt = wt

f

at
(41)

which is equation (10) in the main text.
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Labor is used for entry and production. Total labor demand is Lt = Nt
∫ zmax

z?t
lt (z) dG (z) +

Ntf . We want an expression for lt (z). Cost minimization implies, wtlt (z) = [(1− α) /α] rtkt(z),

where rtkt(i) = α (yt/atzt)w
1−α
t rαt /ψ. In combination with the demand for a product,

wtlt (z) = wt
atzt(i)

st(z)yt
ρt(z)

[(
1−α
α

)
rt
wt

]α
= (1− α) st (z) yt/Ωt, where we used mct = 1

at

w1−α
t rαt

(1−α)1−ααα

and ρt (z) = Ωt
mct
zt

. Finally,
∫ zmax

z?t
wtlt (z) dG (z) = (1− α)

(
Ωt−1

Ωt

)
ζyt, using the expression

for market share. Combining terms, total labor costs are,

wtLt = ζ

[∫ zmax

z?t

(Ωt − α) (1− 1/Ωt) dG(z)

]
Ntyt (42)

In combination with equation (40), this implies,

yt = wtLt

[∫ zmax

z?t

(Ωt − 1) dG (z)

]
/

[∫ zmax

z?t

(Ωt − α) (1− 1/Ωt) dG(z)

]

which generates yt = wtLt for α→ 0. The demand for capital is, Kt = Nt
∫ zmax

z?t
kt (z) dG (z),

where rtkt(z) =
(

α
1−α

)
wtlt (z). This leads to,

rtKt = Nt

∫ zmax

z?t

(
α

1− α

)
wtlt (z) dG (z) = αζ

[∫ zmax

z?t

(1− 1/Ωt) dG (z)

]
Ntyt (43)

Using the definition of the markup provided in the text, equations (42) and (43) are used to

generate equations (12) and (13) in the main text.

B.2. Price and Herfindahl Index

In this section, we derive equation (11). Recall, the expenditure function is,

ln (et) = ln ct + νt +
1

nt

∫
i∈∆

ln pt (i) di+
ζ

2nt

∫
i∈∆

∫
j∈∆

ln pt (i) [ln pt (j)− ln pt (i)] djdi (44)

where et is the minimum expenditure required to obtain ct and νt ≡ 1/2ζnt. The price

index, denoted Pt, is the minimum expenditure needed to buy a unit of ct. Using equation

(44) the price index in our model is:

lnPt = νt +
1

nt

∫
ln p (i) di+

ζ

2nt

[∫
ln p (i) di

]2

− ζ

2

∫
[ln p (i)]2 di (45)
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Inserting 1
nt

∫
ln pt (i) di = 1

1−Gt

∫
z?t

ln pt (z) dG (z) and nt = Nt (1−Gt) into equation (45),

we find:

(1−Gt) (lnPt − νt) =

∫
z?t

ln pt (z) dG (z) +
ζNt
2

[∫
z?t

ln pt (z) dG (z)

]2

−ζNt (1−Gt)

2

∫
z?t

[ln pt (z)]2 dG (z)

where Gt ≡ G (z?t ). We subtract ln p (z?t ) from both sides, so,

(1−Gt) [− ln ρ (z?t )− νt] =

∫
z?t

ln
ρt (z)

ρ (z?t )
dG (z)

−ζNt (1−Gt)

2

∫
z?t

[
ln
ρt (z)

ρ (z?t )
+ ln p (z?t )

]2

dG (z)

+
ζNt
2

[∫
z?t

(
ln
ρt (z)

ρ (z?t )

)
dG (z) + (1−Gt) ln p (z?t )

]2

where ρt (i) ≡ pt (i) /Pt. Now recall,

− ln
ρ (z)

ρ (z?t )
= zt

ρ (z)

mct
− 1 = Ω

(
z

z?t
exp

)
− 1 and ρ (z?t ) = mct/z

?
t

where Ω
(
z
z?t

exp
)

is the Lambert-W function and the latter expression is the reservation

price. Substituting for demand - equation (40) - we find,

− ln ρ (z?t )− νt = − 1

ζN (1−Gt)
+
ζNt (1−Gt)

2

[
ln p (z?t )−

1

ζN (1−Gt)

]2

−ζNt
2

∫
z?t

[ln p (z?t )− (Ωt − 1)]2 dG (z)

which simplifies to,

ln
mct
z?t

=
ζ

2

[∫ zmax

z?t

(Ωt − 1)2 dG (z)

]
Nt (46)

where Ωt ≡ Ω
(
z
z?t

exp
)

and π3,t ≡
∫ zmax

z?t
(Ωt − 1)2 dG (z) is reported in the main text.

Finally we can consider the Herfindahl index. Recall, s (zt) = ζ (Ωt − 1), with the Herfindahl

index defined as, H (z?t ) ≡ Nt
∫ zmax

z?t
s2 (zt) dG (z). Note that we expect all shares equal to
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one, and so, Nt
∫ zmax

z?t
s (zt) dG (z) = 1. In combination, we have,

H (z?t ) ≡ ζ

[∫ zmax

z?t

(Ωt − 1)2 dG (z)

]
/

[∫ zmax

z?t

(Ωt − 1) dG (z)

]
(47)

which is reported in the main text and π1,t ≡
∫ zmax

z?t
(Ωt − 1) dG (z).
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Appendix C

In this Appendix we present additional details for the simplified equations in Section 3.3 of

the main text. Using the equation for factor prices when α→ 0 we have yt = wtLt. Absent

investment, yt = ct, such that, when ctuc (t) = 1, we find, −LtuL (t) = 1. When α→ 0, we

also know π1,t = z?t
∫ zmax/z?t

1
(Ωt − 1) g (uz?t ) du = π3,t. We also assume the distribution of

productivity is, g (z) = κz−(κ+1)/ [1− z−κmax] and G (z) = (1− z−κ) / [1− z−κmax], with zmin = 1.

This implies the log hazard ratio is, φ (z?) ≡ [g (z?) z?] / [1−G (z?)] = κ/
[
1− (zmax/z

?)−κ
]
.

We express the solution to the model as,

1 = ζπ1,tNt ; z?t exp

(
Ht
2ζ

)
= wt/at ; wt = yt ; wt

(
f/at
ζ

)
= π2,tyt (48)

where Lt = 1 and Ht ≡ H (z?t ) which is a system of four equations that determine the

variables {z?t ,Nt, wt, yt}. We have already established that z?t falls with Lt, which is now

assume to be the aggregate shock. This leads to,

(κ+ ζ2) ẑ?t = −π̂2,t = ât and N̂t = −π̂1,t = (κ+ ζ1) ẑ?t (49)

which implies that as labor supply rises so does the productivity cut-off falls and firm entry.

Product variety is, n̂t = N̂t − [φ (z?)] ẑ?t =
{
ζ1 − κ(zmax/z?)−κ

1−(zmax/z?)−κ

}
ẑ?t > 0, where ζ1 > 0 is

reported above. Finally, we map the shock into output and the Herfindahl index, in the

following way,

ŷt = ât + ẑ?t +

(
H

2ζ

)
Ĥt ; Ĥt = (ζ1 − ζ3) ẑ?t < 0 (50)

I also derive expressions for average productivity and the markup. For average productivity,

zt =
1

1−G (z?)

∫ zmax

z?t

zdG (z) ⇒ ẑt = φ (z?)

(
1− z?

z

)
ẑ?t (51)

Given the definition of the markup in the text, mt ≡ π1,t/ [1−G (z?t )], we have,

mt =
κ

1− (zmax/z?t )
−κ

∫ zmax/z?t

1

(Ωt − 1)u−1−κdu

⇒ m̂t = κ
(z?/zmax)κ

1− (z?/zmax)κ

[
1−

(
Ω− 1

m

)]
ẑ?t (52)
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such that as zmax →∞ then mt → κ
{∫∞

1
(Ω− 1)u−κ−1du

}
and µ̂t → 0.
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Table 1: Model Equations

Description Model Equations Auxiliary Variables

Product Demand Nt = 1/ζπ1,t π1,t =
∫ zmax

z?t
(Ωt − 1) dG (z)

Free Entry π2,tyt = (f/ζ) (wt/at) π2,t =
∫ zmax

z?t
(Ωt − 1) (1− 1/Ωt) dG (z)

Price Index atz
?
t × exp (Ht/2ζ) = w1−α

t rαt /ψ Ht =
∫ zmax

z?t
(Ωt − 1)2 dG (z) /π1,t

Factor Price (labor) wt = yt
Lt
π3,t/mt

∫ zmax

z?t
dG (z) π3,t =

∫ zmax

z?t
(Ωt − α) (1− 1/Ωt) dG (z)

Factor Price (capital) rt = α yt
Kt
π4,t/mt

∫ zmax

z?t
dG (z) π4,t =

∫ zmax

z?t
(1− 1/Ωt) dG (z)

Labor Supply wt = −uL (t) /uc (t) mt = π1,t/
∫ zmax

z?t
dG (z)

Capital Accumulation it = Kt+1 − (1− δ)Kt −

Euler Equation uc (t) = βEtuc (t+ 1) [rt+1 + (1− δ)] −

Resource Constraint yt = ct + it −

40



Table 2: Exogenous Parameters and Calibration

Parameters Set Exogenously

Statistic Parameter Value Target/Source

Discount factor β 0.96 4% risk-free rate

Depreciation rate δ 0.1 10%

Capital share α 1/3 -

Translog scaling ζ 1 Normalization

Inverse Frisch ν 1.39 Heathcote et al. (2010)

Parameters for Productivity Distributions

Distribution Parameters Values Target(s) Source

Pareto

shape κ 1.653 − Nigai (2017)

location zmax 3.835 m = 0.23 Martins et al. (1996)

Log normal

shape σ 0.321 m -

location µ 0.445 zPareto
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Figure 1: Impulse Responses to a Technology Shock
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Table 3: Business Cycle Moments23

Second Moments

σx

Variable x Data RBC Pareto LN

yt 1.81 1.01 1.41 1.35

ct 1.35 .60 .76 .70

it 5.30 2.79 4.63 4.40

Lt 1.79 .18 .28 .27

wt .68 .83 1.12 1.05

rt .30 .84 1.68 1.64

TFPt − .92 1.12 1.07

Nt − − 1.03 .89

mt .99 − .28 .62

23Source for data and RBC moments: King and Rebelo (1999) and Etro and Colciago (2010).
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