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Abstract

We study the e¤ects of corruption on equilibrium competition and social welfare

in a public procurement auction. In our model, �rms are invited to the auction at

positive costs, and a bureaucrat who runs the auction on behalf of a government

may request a bribe from the winning �rm. We �rst present the over-invitation re-

sults in the absence of corruption, in which more than a socially optimal number of

�rms will be invited. Second, we show that the e¤ects of corruption on equilibrium

outcomes vary across di¤erent forms of bribery. For a �xed bribe, corruption has

no e¤ect on equilibrium competition, although it does induce social welfare loss.

For a proportional bribe, a corrupt bureaucrat may invite fewer or more �rms to

the auction depending on how much he weights his personal interest relative to the

government payo¤. Thus, corruption may result in either Pareto-improving or dete-

riorating allocations. Finally, we show that information disclosure may consistently

induce more �rms to be invited, regardless of whether there is corruption.
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1 Introduction

Public procurements account for a substantial part of economies worldwide. In the Euro-

pean Union (EU), for example, more than 250,000 public authorities spend approximately

14% of GDP on the purchase of services and supplies each year.1 Corruption is a common

concern in this context. To prevent corruption, most countries implement laws and regu-

lations to guarantee necessary competition and transparency in public procurements. For

instance, the EU requires a minimum of 52 days for a public contract notice in an open

procedure, for which any business can submit a tender, and in a restricted procedure, for

which only thoese who are pre-selected are invited to submit a tender, a public authority

must invite at least �ve bidders to the competition process.2 The belief underlying these

rules is that competition may help improve e¢ ciency and reduce corruption.

Surprisingly, the existing literature has paid insu¢ cient attention to the intrinsic

link between corruption and competition in public procurements. In this paper, we will

investigate this important issue in a model of a procurement auction. Speci�cally, in

our model, there are three parties: a government, such as the Department of Defense;

a bureaucrat who runs the procurement auction on behalf of the government; and a

number of potential �rms (bidders) who can bid for the public contract if invited. Firms

are invited to the auction at a positive invitation cost, and the bureaucrat may request

a bribe from the winning �rm of the auction.3

We investigate the common practice of �rst-price procurement auctions. In a standard

�rst-price procurement auction, the �rm with the lowest cost wins, and the price received

is equal to its bid. Without corruption, the bureaucrat�s objective is in line with that

of the government, which is related to the price paid to the winning �rm. The social

welfare, however, is related to the actual production cost of the winning �rm; thus, we

do not model the government as a social planner in this paper.

Under the standard assumption for procurement auctions that �rms�cost distribution

is of decreasing reversed hazard rate (DRHR) and that there is a positive invitation cost,

we show that in equilibrium, the bureaucrat will invite more �rms than the socially

optimum to bid for the public contract. In other words, the optimal number of �rms

that maximizes the government�s payo¤ is larger than the e¢ cient number of �rms that

maximizes social welfare. This over-invitation result is not as surprising as it �rst looks,

as the government is modeled as a government division in our model; it cares about

its own procurement payo¤ rather than the overall social welfare. The intuition is that

1EU website, http://ec.europa.eu/growth/single-market/public-procurement/index_en.htm.
2See europa.eu/youreurope/business/public-tenders/rules-procedures/index_en.htm. Updated on

Nov. 2015.
3This practice apprears in all public sectors, and a portion of the sum that a winning contractor

received is designated for the o¢ cial as kickbacks. See the report prepared for the European Commission
by PwC and Ecorys, �Identifying and Reducing Corruption in Public Procurement in the EU.� June 30,
2013.
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inviting an extra �rm reduces the expected total surplus of the �rms, which is ignored by

the payo¤-maximizing government but is taken into account in the total social welfare.

We then introduce corruption into the procurement auction, in which the bureaucrat

may request a bribe from the winning �rm. In public procurements, corruption takes

many forms. In our study, we consider two speci�cations of bribery. The �rst is a �xed

bribe in which the bureaucrat requests the winning �rm to pay a �xed amount as a bribe.

For instance, the �xed bribe can be in the form of a commission fee or a kickback that

occurs in the real world (Inderst and Ottaviani, 2012). The second is a proportional

bribe, whereby the winning �rm must share a proportion of its revenue with the corrupt

bureaucrat. For example, in Indonesia, the former president Suharto was publicly known

as �Mr. Twenty-Five Percent�because he required that all major contracts throughout

the nation give him 25 percent of the income.4 We assume that the bureaucrat cares

about a weighted average of his individual bribe and the government payo¤.

Our main result is that the e¤ects of corruption on equilibrium competition and

social welfare vary across di¤erent forms of bribery. When the bribe is a �xed amount,

the corrupt bureaucrat invites the same number of �rms as in the absence of corruption,

as his incentive to invite �rms remains the same as before. That is, corruption in the

form of a �xed bribe has no e¤ect on equilibrium competition. However, it does change

social welfare and resource allocation in equilibrium. Under the expectation of paying

the �xed bribe upon winning, all �rms will mark up their bids by the same amount of

bribe, which increases the expected payment of the government to the winning �rm. As

a result, the �xed bribe is actually paid by the government, and it will not hurt the �rms

at all. Meanwhile, increased public expenditure by the government implies social welfare

loss due to the marginal cost of distortion of public funds.

By contrast, under a proportional bribe, the corrupt bureaucrat may invite either

fewer or more �rms to the auction than before, depending on how much the bureaucrat

weights his personal interest relative to the government payo¤. There are two opposite

e¤ects here on the equilibrium competition. On the one hand, the proportional bribe

will increase �rms�bids proportionally, therefore making the distribution of bids more

dispersed. It decreases competition in the auction, and, in response to it, the bureaucrat

needs to encourage competition. On the other hand, the bureaucrat also has an incentive

to discourage competition, as the winning �rm�s revenue is decreasing in competition in

the auction, and the bribe he receives is a proportion of it. Therefore, the relative magni-

tude between these two opposite e¤ects determines the equilibrium level of competition.

A seemly surprising result is that corruption in the form of a proportional bribe may

induce Pareto-improving allocation in equilibrium.

We also consider the format of second-price procurement auctions and show that

4Wrage, Alexandra Addison. Bribery and Extortion: Undermining Business, Governments, and
Security. Westport, Conn.: Praeger Security International, 2007. p. 14.

2



the Revenue Equivalence Theorem still holds in our settings. Speci�cally, under the

�xed bribe, �rms will mark up their bids by the same amount of bribe, and under the

proportional bribe, �rms will correspondingly raise their bids proportionally. In the end,

the e¤ects of corruption on equilibrium competition and social welfare are the same in

both �rst- and second-price procurement auctions.

We further investigate the e¤ects of information disclosure on auction outcomes.

When �rms�areas of specialization are di¤erentiated, revealing project information may

induce more dispersed distribution of �rms�cost estimates. A piece of project information

may drive up the cost estimates of some �rms, if they �nd it is a mismatch to their areas

of specialization, while driving down those of others that �nd it to be a good match. As

a result, �rms�cost estimates become more dispersed under information disclosure. We

show that information disclosure increases both the e¢ cient and optimal number of �rms

in procurement auctions. The intuition is that under information disclosure, �rms�cost

estimates become more dispersed, and the auction becomes less competitive than before.

It is then better to invite more �rms to the auction, either to maximize government payo¤

or social welfare. This result continues to hold in the case of corruption.

Finally, we also provide brief discussions on the policy implications of our results.

For the regulation of public procurement, we show that imposing a requirement on the

minimum number of bidders may be e¤ective only when it lies in a reasonable range. For

instance, if it is too low, it will not impose real restrictions on a corrupt bureaucrat�s

choice; if it is too high, it may instead incur social welfare loss in equilibrium.

To the best of our knowledge, our study is the �rst to examine the e¤ects of various

forms of corruption on equilibrium outcomes in procurement auctions with a variable

number of �rms. In the literature, most papers focus on how a bureaucrat manipulates

the auction rules in exchange for bribes while the number of �rms is �xed. For example,

Compte et al. (2005) and Menezes and Monteiro (2006) consider a corruption model in

which the bureaucrat may o¤er a favored �rm an opportunity to readjust its initial bid

in exchange for a bribe. This arrangement is known as right of �rst refusal, and other

related papers include Burguet and Perry (2009) and Arozamena and Weinschelbaum

(2009). Another strand in the literature studies corruption in multidimensional procure-

ment auctions, whereby the government may care about both the price and quality of the

project. Celentani and Ganuza (2002) and Burguet and Che (2004) examine corruption

in which the bureaucrat manipulates the quality assessment to favor the �rms o¤ering

higher bribes.

Regarding the link between competition and corruption, the general idea is that in-

creasing competition may reduce corruption (Svensson, 2005), and Ades and Di Tella

(1999) provide some supportive empirical evidence showing that corruption is higher in

countries where foreign competition is restricted. However, several theoretical studies

show that a simple relationship may not hold generally. Bliss and Di Tella (1997) pro-
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pose a model in which both the equilibrium number of �rms and the level of corruption

are endogenously determined by other parameters, and the negative relationship between

competition and corruption does not always hold. Celentani and Ganuza (2002) also �nd

that with an increasing number of �rms, there may be a higher level of corruption. In this

paper, we also show that the relationship between corruption and competition depends

on the particular form of bribery.

Our paper is also related to the literature on auctions with costly entry. McAfee

and McMillan (1987) and Levin and Smith (1994) examine the entry process in which

potential bidders must pay a �xed entry cost. Szech (2011) and Fang and Li (2015)

consider the other case in which the auctioneer incurs costs to invite potential bidders,

and they show the over-invitation result in ascending auctions when bidders�valuation

distribution is of increasing failure rate. We follow the similar setting of positive invitation

cost, albeit in the case of descending procurement auction, and derive the over-invitation

results under the di¤erent DRHR assumption. Our primary focus in on the link between

corruption and the equilibrium competition and social welfare in procurement auctions.

The remainder of this paper is organized as follows. Section 2 introduces the bench-

mark model of procurement auction where there is no corruption. Section 3 studies the

equilibrium outcomes under corruption, and there are two cases, the �xed bribe and pro-

portional bribe. Section 4 provides some further discussions, and Section 5 presents our

concluding remarks.

2 Benchmark: without corruption

Consider a public procurement auction in which a government plans to allocate a contract,

and a bureaucrat runs the auction on behalf of the government. We assume there are an

in�nite number of potential �rms quali�ed for this contract, and n �rms are invited to

the auction at a cost of C(n), which is paid by the government. The value of the contract

to the government is V . The cost function C(n) is increasing and weakly convex, that is,

C 0(n) > 0 and C 00(n) � 0. The �rms are ex ante homogenous whose production cost X
conforms to the distribution of F (�) on [0; V ], with strictly positive density f(�). Assume
all players are risk-neutral.

For those invited �rms, i = 1; 2; :::; n, let fXigni=1 be n independent draws from the

same distribution F (�), where Xi is the production cost for �rm i. The distribution of

F (�) is common knowledge, and the realization of Xi is only observed by �rm i. We

denote Xk:n be the kth lowest cost of the n invited �rms, and we have

X1:n � X2:n � � � � � Xn:n:

For an order statistic Xk:n, let Fk:n (�) and fk:n (�) be its cumulative distribution function
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and probability density function, respectively.

As commonly practiced, we assume that the procurement runs in the format of a

sealed-bid �rst-price auction. It is well known that the symmetric equilibrium bidding

strategy in a �rst-price procurement auction is given by (e.g., Krishna, 2002, p.17),

b(x) = E[X1:n�1jX1:n�1 > x] = x+

Z V

x

�F1:n�1(y)
�F1:n�1(x)

dy;

where �F1:n�1(x) = 1� F1:n�1(x) is the survival function.
In the auction, the �rm with the lowest cost X1:n wins, and its revenue is equal to the

bid b(X1:n).5 The rent for the winning �rm is thus

R(n) = b(X1:n)�X1:n: (1)

The government�s payo¤ is equal to the net project bene�t, V � b(X1:n), minus the

invitation cost, C(n), which is

�(n) = V � b(X1:n)� C(n): (2)

In this benchmark case of no corruption, we assume the bureaucrat�s objective is in line

with that of the government, and he does not gain personal bene�t.

It is worth noting that we do not model the government as a social planner. Instead,

we model it as a government agency that cares about its own payo¤ rather than overall

social welfare. For example, the Department of Defense in the U.S. procures weapons

systems, and its primary concerns are the budget spending and the performance of the

weapons system procured.

Government spending, including payment to the winning �rm, b(X1:n), and the ex-

penditure on invitation cost, C(n), uses public funds that are �nanced through taxation.

We assume that there is a marginal cost of public funds, which is � 2 [0; 1), due to

the distortion of resource allocation caused by taxation (La¤ont and Tirole, 1987). So-

cial welfare is then measured by the sum of the rents of �rms (1) and the payo¤ of the

government (2), less the distortion cost of public funds, which is

W (n) = R(n) + �(n)� �(C(n) + b(X1:n)) = V �X1:n � �b(X1:n)� (1 + �)C(n): (3)

As the auction organizer, the bureaucrat decides how many �rms are invited. When

there is no corruption, his objective is to select the optimal number of �rms to maximize

the expected government payo¤, E[�(n)]. We are also interested in the e¢ cient number

of �rms that maximizes the expected social welfare, E[W (n)]. Next, we will show that the

5The case of tying is ignored since the distribution of �rms�production costs is continuous.
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optimization problems of E[�(n)] and E[W (n)] are well de�ned under speci�c standard

assumptions, and these results are determined by the properties of E[X1:n] and E[X2:n].

We provide several results in the following paragraphs.

Lemma 1 The expected payment of the government is equal to the expected second-lowest
production cost, that is,

E[b(X1:n)] = E[X2:n]:

This result is implied by the Revenue Equivalence Theorem.

Lemma 2 E[X1:n] is strictly decreasing and strictly convex in n, and limn!1E[X1:n] =

0.

Proof: In the Appendix.
The monotonicity property is straightforward as X1:n is the smallest order statistic,

and as the number of �rms invited into the auction increases, E[X1:n] will naturally

decrease and converge to zero. The convexity result is implied by the continuity of the

distribution F (�). The property of the second-order statistic, E[X2:n], is more challenging

to interpret. We will next show that as the distribution of X satis�es the property of

decreasing reversed hazard rate, then E[X2:n] is strictly convex in n.

De�nition 1 The distribution of X is said to be of decreasing reversed hazard rate

(DRHR) if its reversed hazard rate

f(x)

F (x)

is decreasing in x.

The DRHR assumption onX in the procurement auction is analogous to the regularity

condition of increasing failure rate in the standard ascending price auction (Myerson,

1981). The di¤erence is that in a procurement auction, the bidder o¤ering the lowest bid

wins the auction, whereas in a standard ascending price auction the bidder o¤ering the

highest bid wins.

There are many examples of DRHR distributions, such as uniform, normal and ex-

ponential distributions. Furthermore, a positive random variable cannot have increasing

reversed hazard rate, because f(x)=F (x) will converge to in�nity when x approaches

zero. Therefore, in our case of positive production cost, it is not possible for X to be of

increasing reversed hazard rate.

The following result shows that when the distribution of X is of DRHR, E[X2:n] is

strictly convex in n.
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Lemma 3 If the distribution of X is of DRHR, then

(i) E[X2:n] is strictly decreasing and strictly convex in n.

(ii) Moreover, limn!1E[X2:n �X2:n+1] = 0:

Proof: In the Appendix.
The result that E[X2:n] is strictly decreasing in n does not depend on the condition of

DRHR. In fact, DRHR is a su¢ cient yet unnecessary condition for the convexity result,

and a weaker su¢ cient condition is that F 2(x)
f(x)

is increasing in x, which is implied by

DRHR.

In addition, we are also interested in how the expected rent of the winning �rm

changes with n. From Lemma 1, it is the expectation di¤erence of the �rst- and second-

order statistic. We have the following result.

Lemma 4 If the distribution of X is of DRHR, then the expected rent of the winning

�rm,

E[R(n)] = E[X2:n �X1:n]

(i) is strictly decreasing and strictly convex in n.

(ii) limn!1E[R(n)] = 0:

Proof: In the Appendix.
The intuition underlying this result is that increasing competition will gradually

squeeze out the expected rent of the winning �rm. Furthermore, the expected rent

converges to zero when the number of �rms approaches in�nity. A direct implication of

Lemma 4 is that

E[X2:n �X2:n+1] > E[X1:n �X1:n+1]; (4)

that is, for given n, if one more �rm is invited into the auction, then the expected value

of E[X2:n] drops faster than E[X1:n].

Our Lemma 2-4 are analogous to Lemma 1-4 in Szech (2011), who studied second-

price ascending auctions. In this paper, however, we examine the procurement auction

in the format of �rst-price descending auctions. Based on our discussions above, we

know that maxE[�(n)] and maxE[W (n)] are both well de�ned concave maximization

problems under the assumption of DRHR. Denote n� to be the optimal number of �rms

that maximizes the government�s expected payo¤, and n�� to be the e¢ cient number of

�rms that maximizes the expected social welfare, respectively. By de�nition, we have

n� = argmax
n
E[�(n)] and n�� = argmax

n
E[W (n)]: (5)

Here, the number of �rms is discrete, and n� and n�� may not be unique.
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The main result of this section is the comparison between the optimal and e¢ cient

number of �rms in the procurement auction without corruption, which gives us the fol-

lowing result.

Proposition 1 If the distribution of X is of DRHR, then we have

n� � n��: (6)

Proof: In the Appendix.
The proposition states that when the distribution of �rms�cost estimates is of DRHR,

the bureaucrat, with the aim of maximizing the expected payo¤ for the government, will

invite more �rms into the procurement auction than the social optimum. In other words,

over-invitation of �rms occurs in the benchmark case of no corruption.

The over-invitation result is not surprising at �rst glance, and it is implied by the

inequality function of (4). For one more �rm entering the auction, the marginal change

in the expected government payo¤ is �E[�(n)] = E[X2:n�X2:n+1]� (C(n+1)�C(n)),
and the marginal change of the expected social welfare can be normalized as

1

1 + �
�E[W (n)] =

1

1 + �
E[X1:n�X1:n+1] +

�

1 + �
E[X2:n�X2:n+1]� (C(n+ 1)�C(n)):

The inequality function (4) implies that for any given n,�E[�(n)] is larger than 1
1+�
�E[W (n)].

Applying the optimization conditions of�E[�(n�)] � 0 > �E[�(n�+1)] and 1
1+�
�E[W (n��)] �

0 > 1
1+�
�E[W (n�� + 1)], we obtain the over-invitation result (6). Basically, it is based

on the fact that the marginal change of the expected government payo¤ is larger than

the normalized marginal change of social welfare. Thus, the expected government payo¤

approaches the maximum more slowly than the expected social welfare does.

To gain a deeper understanding of the results obtained above, we provide a simple

numerical example where X conforms to a uniform distribution.

Example 1 Let X � U [0; V ], which is obviously of DRHR. If there are n �rms in the
auction, then

E[X1:n] = V �
Z V

0

F1:n(x)dx =
1

n+ 1
V;

E[X2:n] = V �
Z V

0

F2:n(x)dx =
2

n+ 1
V:

And both E[X1:n] and E[X2:n] are strictly decreasing and convex in n, as shown in

Lemma 2 and 3. Assume C(n) = nc, where c is constant.

The expected rent of the winning �rm is

E[R(n)] = E[X2:n �X1:n] =
1

n+ 1
V;
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which is strictly decreasing and convex in n, and limn!1E[R(n)] = 0, as shown in

Lemma 4.

The optimal decision problem for the bureaucrat is thus

max
n
E[�(n)] = V � E[X2:n]� nc = V �

2

n+ 1
V � nc;

and the optimal condition for n� is

n�(n� + 1) � 2V

c
< (n� + 1)(n� + 2):

We next solve the following problem for the socially e¢ cient number of �rms:

max
n
E[W (n)] = V � E[X1:n]� �E[X2:n]� (1 + �)nc:

The optimal condition for n�� is thus

n��(n�� + 1) � (1 + 2�)V

(1 + �)c
< (n�� + 1)(n�� + 2):

Apparently, n� � n��, as 1+2�
1+�

� 2. For example, if � = 0:2, c = 2 and V = 36, then
we have n� = 5 and n�� = 4. This result con�rms the result (6) in Proposition 1.

3 Corruption in Procurement Auctions

We next introduce corruption into the public procurement auction. As Jain (2001) states,

corruption is an act in which the power of public o¢ ce is used for personal gain in a

manner that contravenes the rules of the game. Various types of corruption are identi�ed

in the real world. In this paper, we consider the case whereby the bureaucrat in charge

of the procurement can request a bribe of B(n) from the winning �rm. We assume that

the invited �rms are fully aware of the request and that they accept this tacit rule prior

to the auction. As only the winner pays the bribe, our setting rules out sunk investments

for the �rms as lobbying activities, as in all pay auctions or other standard rent-seeking

models.

In particular, we consider two forms of bribery: a �xed bribe amount, B(n) = B, and

a proportional bribe, B(n) = �b(X1:n), � 2 [0; 1]. In the �rst case, the �xed bribe amount
is speci�ed by the bureaucrat, and all the �rms know this condition before o¤ering their

bids. In the second case, the fraction � is exogenously given, and the kickback is just

a proportion of the winning bid. These two forms of bribery are relatively pervasive

in the real practice of public procurements, such as commissions and kickbacks paid to
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agencies.6

We assume that the bureaucrat cares about not only his individual bribe B(n) but

also the government payo¤, �(n). Speci�cally, the bureaucrat�s objective function is a

weighted average of these two terms, as follows:

U(n) = ��(n) + (1� �)B(n);

where � 2 [0; 1] is the weight for government payo¤.
We do not consider a penalty for corruption in our model, although it could be intro-

duced in a straightforward way, for example, a detecting probability that is decreasing

in � and a penalty that is proportional to B(n). Our focus here is on the relationship

between corruption and equilibrium competition in the procurement auction. The intro-

duction of a penalty will at most temper but will not change the direction of the results;

therefore, we avoid that complication in our model.

3.1 Fixed bribe

In the case of �xed bribe, the bureaucrat requests the winning �rm to pay a �xed bribe

of B after the auction. As mentioned above, we assume that �rms are fully aware of the

request prior to the auction, and accept it as a tacit rule. The �xed amount of bribe

B therefore appears to be a part of the cost, conditional on winning the auction. Let

subscript �F�denote �xed bribe. The virtual cost for �rm i is nowX 0
i = Xi+B, conditional

on winning. Thus, the symmetric equilibrium bidding strategy is bF (Xi) = b(X
0
i), which

satis�es the following property:

Lemma 5 The symmetric equilibrium bidding strategy in a �rst-price procurement auc-

tion, with a �xed bribe of B, is given by

bF (x) = E[X1:n�1jX1:n�1 > x] +B = b(x) +B:

That is, all �rms will increase the bid by the amount of the bribe.

Proof: In the Appendix.
As a result, the lowest cost �rm wins with a bid of b(X1:n) + B, and the payment it

receives is the same as the bid. Thus, the rent for the winning �rm remains the same as

6For example, in the case of Mexico City - Querétaro High-Speed Railway, it was said that the winning
consortium gave a USD 7 million house, as a present to the president�s wife. (See Forbes, Feb. 10, 2015.
�Mexico Suspends Multibillion Dollar High-Speed Rail Project At Center of Political Scandal.�) In the
case of �Fat Leonard�procurement corruption scandal in US Navy, Leonard Francis of Singapore-based
Glenn Defense Marine Asia admitted bribing US Navy o¢ cers tens of millions of dollars to win hundreds
of millions in business and over-payments. (See The New York Times, Nov. 29, 2013. �Scandal Widens
Over Contracts for Navy Work.�)

10



in equation (1), which is

RF (n) = b(X1:n)�X1:n: (7)

However, under the �xed bribe, the government needs to pay the amount of B more than

before in equation (2), and its payo¤ is now

�F (n) = V �B � b(X1:n)� C(n): (8)

The social welfare is equal to the sum of the rent of the winning �rm (7), the government�s

payo¤ (8), and the �xed bribe for the bureaucrat B, and then minus the distortion cost

of public funds �(B + b(X1:n) + C(n)). Thus, the total social welfare is

WF (n) = V �X1:n � �(B + b(X1:n))� (1 + �)C(n): (9)

Compared with equation (3), the social welfare in the case of no corruption, we �nd that

WF (n) is smaller than W (n) by the extra cost of �B.

One potential issue is that the payo¤ for the government might be negative. If we

think of V as the government�s willingness to pay, then V can also be interpreted as

the maximum budget for the contract. The case of negative government�s payo¤ then

can be explained as a case of a project budget de�cit, which is relatively pervasive in

public procurement. See Ganuza (2007) for more discussions on the cost overruns in

procurements. Here, we allow the possibility of negative �F (n) in our model.7

The corrupt bureaucrat�s optimization problem is

maxE[UF (n)] = �E[�F (n)] + (1� �)B: (10)

Apparently, when the distribution of X is of DRHR, E[�F (n)] is strictly increasing and

concave in n. The optimization conditions for equation (10) are thus

E[X2:n�1 �X2:n] � C(n)� C(n� 1)

and

E[X2:n �X2:n+1] < C(n+ 1)� C(n);

which are equivalent to the optimization conditions in the case of no corruption. If we

denote the optimal number of �rms in this case of �xed bribe as n�F , then the following

result is obvious.
7Analogous to the participation condition, we can assume the expected rent of the winning �rm

and the expected payo¤ to the government should be non-negative. It is reasonable to say that only
E[�(n)] � 0 and E[�F (n)] � 0 needed to be considered. In particular, as the bureaucrat makes choices
on the number of invited �rms and the �xed bribe amount, these restrictions are applied. That is, the
bribe amount is bounded by the expected government payo¤.
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Proposition 2 If the distribution of X is of DRHR, then under a �xed bribe, a corrupt

bureaucrat will invite the same number of �rms into the procurement auction, as in

the case of no corruption. That is,

n�F = n
�: (11)

However, the �xed bribe incurs a social welfare loss of �B.

The result indicates that bribery in the form of a �xed bribe has no e¤ect on equilib-

rium competition. The intuition underlying this result is straightforward. As the bribe is

�xed at a given level, the bureaucrat�s objective remains the same as in the benchmark

case of no corruption, which is to maximize the expected government payo¤. Therefore,

the �xed bribe will not change the incentive for the corrupt bureaucrat to invite the �rms.

However, it changes resource allocation and the social welfare in equilibrium. As all the

�rms mark up their bid by the �xed amount of bribe B, the bribe is actually paid by

the government and will not hurt the �rms. Furthermore, as the government expenditure

increases by B in this case, the distortion cost of public funds implies that the amount

of social welfare loss is �B. In other words, we then have WF (n
�
F )�W (n�) = ��B from

equations (3), (9) and (11).

In this case, of a �xed bribe, as mentioned before, the expected government payo¤

could be negative. We interpret this case as a project budget de�cit for the government.

Alternatively, if we impose the ex ante participation constraint for the government, the

bureaucrat�s decision is subject to the constraint that E[�F (n)] � 0. In this case, the

value of the �xed bribe B is determined endogenously. However, the result will remain

the same as in Proposition 2. For instance, let B(n) = E[�(n)], it implies E[UF (n)] =

(1� �)E[�(n)], and thus, we also have n�F = n�.

3.2 Proportional bribe

We next consider the case of proportional bribe, and assume that the winning �rm needs

to pay a proportion of � 2 [0; 1] of its winning bid to the corrupt bureaucrat. The

intuition implies that �rms will exaggerate their bids, and the following result shows that

the ratio of exaggeration is 1
1�� . Let us �rst derive the symmetric equilibrium bidding

strategies for �rms.

Lemma 6 The symmetric equilibrium bidding strategy in a �rst-price procurement auc-

tion, with a proportion bribe, is given by

bP (x) =
1

1� �E[X1:n�1jX1:n�1 > x] =
b(x)

1� � :

That is, all �rms will increase the bid by the ratio of 1
1�� .
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Proof: In the Appendix.
Under the proportional bribe, the rent for the winning �rm is

RP (n) = (1� �)bP (X1:n)�X1:n = b(X1:n)�X1:n;

where the subscript �P�denotes the case of proportional bribe. It is obvious that the

government�s payo¤ function is no longer the same as in equation (2), and it is now

�P (n) = V � bP (X1:n)� C(n) = V �
b(X1:n)

1� � � C(n):

The corrupt bureaucrat receives the bribe B(n) = �bP (X1:n). As before, the total social

welfare is the sum of the payo¤s of the three parties, minus the distortion cost of public

funds, which is

WP (n) = V �X1:n �
�

1� � b(X1:n)� (1 + �)C(n):

The corrupt bureaucrat�s payo¤ function is a weighted average of his bribe and the

government�s payo¤, and his problem is thus

maxE[UP (n)] = �E[�P (n)] + (1� �)�E[bP (X1:n)]: (12)

Note that the concavity of E[UP (n)] is not guaranteed naturally in this case. Under

the DRHR assumption, we know that E[�P (n)] is concave, and �E[bP (X1:n)] is convex

in n, and therefore the convex combination of them is not necessarily concave. Simple

transformation follows another expression of E[UP (n)] as

E[UP (n)] = �(V � C(n))�
�� (1� �)�

1� � E[X2:n]:

From Lemma 3, we knowE[X2:n] is strictly decreasing and convex in n, and thus E[UP (n)]

is strictly concave if �� (1� �)� > 0.

Lemma 7 If the distribution of X is of DRHR and � < �
1�� , then E[UP (n)] is strictly

concave in n.

In practice, the condition of � < �
1�� should readily be satis�ed in the case of public

procurement. Given the magnitude of public procurement, usually tens of millions USD,

we could reasonably think that the bribe amount is small relative to the winning bid.

In fact, it is trivial if � � �
1�� , the bureaucrat�s objective function, E[UP (n)], is strictly

decreasing in n, and then the optimal number of �rms, denoted by n�P , is equal to 1, i.e.,

the single bid scenario. Here, we focus on the condition of 0 < � < �
1�� , and the following

result holds.
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Proposition 3 If the distribution of X is of DRHR and 0 < � < �
1�� , then under a

proportional bribe, a corrupt bureaucrat invites either fewer or more �rms into the

procurement auction than in the benchmark case of no corruption. Speci�cally,

(i) if � 2 [0; 1=2], then n�P � n�;
(ii) if � 2 [1=2; 1], then n�P � n�.

Proof: In the Appendix.
The optimal number of �rms under a proportional bribe can be either larger or smaller

than the competition without corruption, which depends on the relative magnitude of

two opposite e¤ects: i) the �rst term of equation (12), E[�P (n)], implies that he may

encourage competition, as �rms raise their bids and therefore the distribution of bids

turns out to be more dispersed than before, which decreases the level of competition in the

auction; ii) the second term of equation (12) implies that the bureaucrat may discourage

competition, as E[bP (X1:n)] is decreasing in n. Thus, the e¤ect of the proportional bribe

on the competition depends on how much the bureaucrat weights his individual interest

relative to the government payo¤. As a result, when the corrupt bureaucrat cares more

about his personal interest, � < 1=2, he will dampen competition in the auction, and

when he cares more about the government payo¤, � > 1=2, he will encourage competition.

Finally, let us turn to the socially e¢ cient number of �rms in di¤erent cases. If we

denote the socially optimal number of �rms in the case of �xed and proportional bribe

by n��F and n��P respectively, then we have following result.

Proposition 4 The order of socially e¢ cient numbers of �rms is

n�� = n��F < n
��
P :

Proof: In the Appendix.
This result suggests that the e¤ects of bribery on e¢ cient competition vary on the

formats of bribery. Although the �xed bribe does not change the socially e¢ cient com-

petition, the bribery incurs some social cost. Speci�cally, we have

WF (n
��
F ) + �B = W (n

��);

from equations (3) and (9). Under proportional bribery, �rms exaggerate their bids

and the distribution of the winning bids becomes more dispersed, which implies a larger

number of �rms for social e¢ ciency.

Let us extend the previous numerical example to the case of corruption, which helps

us to understand the various e¤ects of corruption.
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Example 2 As we assume X � U [0; V ], we have already known that

E[X1:n] =
1

n+ 1
V and E[X2:n] =

2

n+ 1
V:

In the case of a �xed bribe, we have

E[UF (n)] = �E[�F (n)] + (1� �)B:

The optimal number of �rms is apparently n�F = n
� as shown in Proposition 2.

In the case of a proportional bribe, we have

E[UP (n)] = �(V �C(n))�
�� (1� �)�

1� � E[X2:n] = [��
�� (1� �)�

1� �
2

n+ 1
]V ��nc:

If � � �
1�� , then E[UP (n)] is strictly decreasing in n, so n

�
P = 1, that is the minimum

possible number of �rms. It is clear that � = 0 is a special case for the single bid

result.

Let us consider 0 < � < �
1�� , then E[UP (n)] is concave in n. The optimal condition

for n�P is

n(n+ 1) � �� (1� �)�
(1� �)� � 2V

c
< (n+ 1)(n+ 2):

First, if � � 1=2, we have ��(1��)�
(1��)� � 1, and then n�P � n�. For example, if c = 2

and V = 36, we have already known n� = 5. Let us now select � = 1=3 and

� = 1=4 such that ��(1��)�
(1��)� = 2=3, we have the optimal number of �rms under the

proportional bribe, n�P = 4, which is less than n
� = 5.

Second, if � � 1=2, we have ��(1��)�
(1��)� � 1, and then n�P � n�. For example, if c = 2

and V = 36, and then n� = 5. Now we select � = 2=3 and � = 2=5 such that
��(1��)�
(1��)� = 4=3, we have the optimal number of �rms under the proportional bribe,

n�P = 6, which is greater than 5.

4 Further discussion

4.1 Second-price procurement auctions

It is a natural question whether corruption has di¤erent e¤ects on competition in the

second-price procurement auction. As we know, bidding the true production cost Xi is

a weakly dominant strategy in the second-price auction. In the benchmark case of no

corruption, it is easy to show that the result of Proposition 1 holds in the second-price

scenario. We now consider the results as corruption exists.
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In the case of �xed bribe, the bureaucrat requests the winning �rm to pay a �xed

bribe of B after the auction, and then the �xed bribe amount appears to be a part of

�rms� cost condinional on winning the auction. As the virtual cost for �rm i is now

X 0
i = Xi + B, bidding X 0

i is thus a weakly dominant strategy for �rm i, and all �rms

will mark up their bids by the �xed amount of B. Therefore, the �xed bribe has the

same e¤ect on the bidding function from Lemma 5, and we can derive the same result of

Proposition 2 in the second-price setting.

Considering the case of a proportional bribe, we assume that the winning �rm needs

to pay a proportion of � of its revenue to the corrupt bureaucrat. We have the following

result:

Lemma 8 If the winning �rm needs to pay a proportion of � of its revenue to the corrupt
bureaucrat in the second-price procurement auction, bidding 1

1�� times the produc-

tion cost is a weakly dominant strategy.

Proof: In the Appendix.
Recalling Lemma 6, it is obvious that the results of a proportional bribe all remain

the same in the second-price setting. In sum, the Revenue Equivalence result between

the �rst- and second-price auctions still holds as corruption exists.

4.2 Information disclosure

As shown in the recent literature (e.g., Johnson and Myatt, 2006; Ganuza and Panelva,

2010; Jewitt and Li, 2015), information disclosure may induce more dispersed distribution

of consumers�valuations.8 The intuition is that when consumers�preferences are di¤er-

entiated, revealing product information may drive up the valuations of some consumers,

while driving down those of others; therefore, the distribution of posterior valuations

becomes more dispersed.

A similar story can be applied here in our procurement context. For example, the

�rms may have di¤erent expertise or areas of specialization, and revealing information on

the details of the public contract may have di¤erentiated impacts on their cost estimates.

That information may be good news for some �rms when they �nd it is a good match for

their areas of specialization, whereas it may be bad news for others. Consequently, the

distribution of �rms�cost estimates becomes more dispersed under information disclosure.

Let us denote Y as the new cost for the �rms after information disclosure, and the

corresponding distribution is G(�). Compared with the initial cost of X with distribution

F (�), we know the distribution of Y is more dispersed, or formally, X �disp Y , de�ned as
follows:

8If information disclosure leads to more concentrated cost estimates, the opposite results are followed.
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De�nition 2 The random variable X is smaller than Y in the dispersive order, denoted

by X �disp Y , if
F�1(q)� F�1(p) � G�1(q)�G�1(p)

for all 0 < p < q < 1.

In Proposition 2 of Szech (2011), both the revenue-maximizer and the welfare-maximizer

in advertising auctions attract more bidders for the more dispersed distribution of the

bidders�valuations. The similar results hold in our settings. Moreover, we show that

these results also hold when corruption exists. In summary, for the purpose of either wel-

fare or payo¤maximization, when the distribution of �rms�costs become more dispersed

under information disclosure, more �rms need to be invited for the competition in the

public procurement, whether it is with corruption or not, or whether the corruption is in

the form of �xed bribe or proportional bribe.

Proposition 5 If X �disp Y , and the distribution of F (�) and G(�) are DRHR, then we
have

n� � n̂�; n�� � n̂��;

n�F � n̂�F ; n��F � n̂��F ;

n�P � n̂�P ; n��P � n̂��P :

Where n� and n�� denote the optimal number of �rms and socially e¢ cient number

of �rms under the distribution F (�), while n̂� and n̂�� denote the optimal number of
�rms and socially e¢ cient number of �rms under the distribution G(�), respectively.
The subscripts �F�and �P�denote the cases of �xed bribe and proportional bribe.

Proof: In the Appendix.
The intuition, as mentioned above, is that more dispersed cost distribution implies

that �rms are becoming more heterogeneous; thus, for a given number of �rms, auctions

are becoming less competitive than before. As a result, more �rms need to be invited to

increase competition in an auction.

Our discussion on the information disclosure raises the concern that a corrupt bu-

reaucrat can disguise his corruption through information disclosure, which enables him

to manipulate the dispersion of �rms�cost distribution. For example, if the ex ante dis-

tribution of �rms�cost is F (�), the optimal number of �rms without corruption is n� and
the optimal number of �rms with a proportional bribe is n�P . Let us consider the case

of n�P < n�. If the bureaucrat controls information disclosure, then he can manipulate

the cost distribution into G(�), which is more dispersed than F (�). In this case, he can
request the bribery and choose n̂�P , which is larger than n

�
P and possibly closer to n

�.

That information manipulation can be conducted privately such that the government
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may still believe that the underlying distribution is F (�), which makes the detection of
the bureaucrat�s misconduct more di¢ cult.

4.3 Government regulations

The above results show that the e¤ects of corruption on equilibrium competition and

social welfare vary across di¤erent forms of bribery. They also raise the question of

optimal and e¤ective regulations by a central government to ensure sound public services

and improve social welfare. In the case of a �xed bribe, although it will not a¤ect the

equilibrium competition, it does incur more public spending by the government, which

induces social welfare loss. To prevent corruption in that form, the central government

needs to conduct a strict audit of the project budget, guarantee su¢ cient transparency

over the entire competition process, and carefully evaluate the claimed costs by �rms.

In the case of a proportional bribe, the corrupt bureaucrat favors less or more com-

petition to share higher revenue with the winning �rm. The actual impact depends on

how much the bureaucrat weights his individual interest. Thus, it may be not e¢ cient

for the government to impose some requirements on the minimum number of �rms in

public procurements. However, if we believe that a corrupt bureaucrat cares more about

his personal interest than the government payo¤, say � < 1=2 in Proposition 3, then he

will have an incentive to dampen competition in the auction. In this case, it would be

helpful for the central government or legal authorities to impose requirements on the min-

imum number of �rms in public procurement. For example, in the rules and procedures

for public procurement in the European Union, a public authority must invite at least

�ve candidates possessing the capabilities required to submit tenders in the restricted

procedure.9

5 Concluding remarks

The link between corruption and competition is an important issue in public procure-

ments, but it receives insu¢ cient attention in the existing literature. In this paper, we

studied the e¤ects of corruption on equilibrium competition and social welfare in a model

of a �rst-price procurement auction. In our model, a bureaucrat runs the auction on

behalf of the government, and �rms are invited to the auction, which is costly for the

government. The bureaucrat may request a bribe from the winning �rm, which can either

be in the form of a �xed bribe or of a proportional bribe.

First, in the benchmark case of no corruption, whereby the bureaucrat�s objective

is in line with that of the government, we show the over-invitation result. That is, the

9See europa.eu/youreurope/business/public-tenders/rules-procedures/index_en.htm. Updated on
Nov. 2015.
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optimal number of �rms that maximizes the expected government payo¤ is larger than

the e¢ cient number of �rms that maximizes social welfare. This result lies in the fact

that the government is not modeled as a social planner in our model, and it cares about

its own payo¤ rather than the overall social welfare.

Second, for a corrupt bureaucrat, we show that the e¤ects of corruption on equilibrium

competition and social welfare vary across di¤erent forms of bribery. Speci�cally, in the

case of a �xed bribe, corruption has no e¤ect on equilibrium competition, as the bribe

is �xed and it will not change the bureaucrat�s incentive to invite �rms. However, it

does induce social welfare loss and di¤erent resource allocations in equilibrium. This is

because, in expectation of the �xed bribe, all �rms will mark-up their bids by the same

amount of bribe. As a result, it is the government that actually pays the �xed bribe,

and higher government spending implies social welfare loss due to the distortion cost of

public funds.

In the case of a proportional bribe, corruption will induce either less or more compe-

tition in equilibrium. It depends on the weight a bureaucrat gives to his personal interest

relative to the government payo¤.

The results of our model shed light on public procurement regulations. First, we show

that di¤erent forms of corruption have markedly di¤erent implications on competition and

welfare outcomes in procurement auctions. Accordingly, a regulator needs to carefully

consider the di¤erent regulation rules that target di¤erent forms of corruption. Mean-

while, we show that it would be easier for a corrupt bureaucrat to disguise his misconduct

if he could manipulate the information released to �rms. Therefore, when designing the

rules on information disclosure, the regulator needs to conduct a close investigation on

the pros and cons of the e¤ects of information disclosure.

Furthermore, this paper also develops a simple and clear framework for analyzing

relevant issues in procurement auctions where the number of �rms is variable. This

approach is di¤erent from most work in the existing literature whereby the number of

�rms is �xed and the focus is on how a bureaucrat manipulates the auction rules in

exchange for a bribe. We believe this framework can be readily extended to many other

relevant problems, such as corruption in scoring auctions.
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Appendix

Proof of Lemma 2:

Proof: It holds that

E[X1:n] =

Z V

0

xdF1:n (x) =

Z V

0

(1� F (x))n dx;

and it implies

E[X1:n+1 �X1:n] = �
Z V

0

F (x) (1� F (x))n dx < 0:

If f (x) > 0, then E[X1:n+1 � X1:n] is strictly increasing in n. Thus we have E[X1:n] is

strictly decreasing and strictly convex in n.

Furthermore, limn!1E[X1:n] = limn!1

hR V
0
(1� F (x))n dx

i
= 0, as F (x) 2 (0; 1)

for x 2 (0; V ), given that f (x) > 0.
Proof of Lemma 3:

Proof: We �rst have

F1:n(x) = 1� �F (x)n

F2:n(x) = 1� �F (x)n�1[1 + (n� 1)F (x)]

where �F (x) = 1� F (x) is the survival function. It follows that

E[X2:n �X2:n+1] =

Z V

0

[F2:n+1(x)� F2:n(x)]dx =
Z V

0

F 2(x)

f(x)
dF1:n(x) > 0:

If the distribution F (�) is DRHR, we see that the function h(x) = F 2(x)
f(x)

is increasing.

Thus, E[X2:n] is strictly decreasing and convex in n. Furthermore, as limx!0 h(x) = 0,

we have limn!1E[X2:n �X2:n+1] = 0 from the above lemma.

Proof of Lemma 4:

Proof: We have E[X2:n�X1:n] =
R V
0
[F1:n(x)�F2:n(x)]dx =

R V
0

F (x)
f(x)

dF1:n(x): Let h(x) =
F (x)
f(x)

, it is increasing under the DRHR assumption, and limx!0 h(x) = 0. Following the

same proof as in Lemma 3, we obtain the results.

Proof of Proposition 1:
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Proof: If F (�) is DRHR, E[R(n)] = E[X2:n �X1:n] is strictly decreasing in n, then

E[X2:n �X1:n] > E[X2:n+1 �X1:n+1], E[X2:n �X2:n+1] > E[X1:n �X1:n+1]:

From n� = argmaxE[�(n)], the optimization condition implies

E[�(n�)� �(n� � 1)] � 0 > E[�(n� + 1)� �(n�)];

which is equivalent to

E[X2:n��1 �X2:n� ] � C(n�)� C(n� � 1)

and

E[X2:n� �X2:n�+1] < C(n
� + 1)� C(n�):

Similarly, for n�� = argmaxE[W (n)], we have

1

1 + �
E[X1:n���1 �X1:n�� ] +

�

1 + �
E[X2:n���1 �X2:n�� ] � C(n��)� C(n�� � 1)

and

1

1 + �
E[X1:n�� �X1:n��+1] +

�

1 + �
E[X2:n�� �X2:n��+1] < C(n

�� + 1)� C(n��):

As for all n,

E[X2:n�1 �X2:n] >
1

1 + �
E[X1:n�1 �X1:n] +

�

1 + �
E[X2:n�1 �X2:n];

thus, the result of n� � n�� is obvious.
Proof of Lemma 5:

Proof: Denote the new increasing bidding strategy in a symmetric equilibrium by bF (x),
and bidders i = 2; � � � ; n stick to this strategy. Denote Y = min fX2; � � � ; Xng = X1:n�1,

and then bF (Y ) is the lowest bid of those bidders. Bidder 1 wins the auction whenever

his bid � < bF (Y ) bidder, and he chooses the bid to maximize his expected payo¤

E
�
(� � x) � 1�<bF (Y )

�
= (� � x�B)

�
1� F1:n�1

�
b�1F (�)

��
:

Taking the �rst-order condition with respect to �, it follows that

�
1� F1:n�1

�
b�1F (�)

��
� (� � x�B)

f1:n�1
�
b�1F (�)

�
b0F
�
b�1F (�)

� = 0:
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In symmetric equilibrium, � = bF (x), and thus

b0F (x) [1� F1:n�1 (x)]� b (x) f1:n�1 (x) = � (x+B) f1:n�1 (x) ;

or equivalently,

d

dx
[bF (x) [1� F1:n�1 (x)]] = � (x+B) f1:n�1 (x) :

Since b (V ) = V +B, then

bF (x) =

Z V

x

(y +B) d
F1:n�1 (y)
�F1:n�1 (x)

= (x+B) +

Z V

x

�F1:n�1 (y)
�F1:n�1 (x)

dy:

Proof of Lemma 6:

Proof: Denote the new increasing bidding strategy in a symmetric equilibrium by bP (x),
and bidders i = 2; � � � ; n stick to this strategy. Denote Y = min fX2; � � � ; Xng = X1:n�1,

and then bP (Y ) is the lowest bid of those bidders. Bidder 1 wins the auction whenever

his bid � < bP (Y ) bidder, and he chooses bid to maximize his expected payo¤

E
�
((1� �) � � x) � 1�<bP (Y )

�
= [(1� �) � � x]

�
1� F1:n�1

�
b�1P (�)

��
:

Taking the �rst-order condition with respect to �, it follows that

(1� �)
�
1� F1:n�1

�
b�1P (�)

��
� [(1� �) � � x]

f1:n�1
�
b�1P (�)

�
b0P
�
b�1P (�)

� = 0:

In symmetric equilibrium, � = bP (x), and thus

b0P (x) [1� F1:n�1 (x)]� bP (x) f1:n�1 (x) = �
xf1:n�1 (x)

1� � ;

or equivalently,
d

dx
[bP (x) [1� F1:n�1 (x)]] = �

xf1:n�1 (x)

1� � :

Since b (V ) = V= (1� �), then

bP (x) =

Z V

x

y

1� �d
F1:n�1 (y)
�F1:n�1 (x)

=
1

1� � b (x) :

Proof of Proposition 3:
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Proof: If 0 < � < �
1�� , Lemma 7 implies E[UP (n)] is strictly concave in n. Then, the

optimization conditions for n�P are

�� (1� �)�
1� � E[X2:n�1 �X2:n] � �(C(n)� C(n� 1))

and
�� (1� �)�

1� � E[X2:n �X2:n+1] < �(C(n+ 1)� C(n)):

Compared with the optimization conditions for n�, we imply that,

If ��(1��)�
1�� � �, i.e., � � 1=2, then we have n�P � n�.

If ��(1��)�
1�� > �, i.e., � > 1=2, we have n�P > n

�.

Proof of Proposition 4:

Proof: Apparently, n��F = n
��, in which both follow the same optimization conditions

�(n) � C(n)� C(n� 1)

and

�(n+ 1) < C(n+ 1)� C(n);

where �(n) = 1
1+�
E[X1:n�1�X1:n] +

�
1+�
E[X2:n�1�X2:n]. Under proportional bribe, the

optimization conditions are

�(n) +
��

(1 + �)(1� �)E[X2:n�1 �X2:n] � C(n)� C(n� 1)

and

�(n+ 1) +
��

(1 + �)(1� �)E[X2:n �X2:n+1] < C(n+ 1)� C(n):

Thus, we have n��P > n
��.

Proof of Lemma 8:

Proof: Let us denote the increasing bidding function by bP (x) for a �rm with cost x.

Given other �rms that follow this strategy, we derive the equilibrium for �rm 1. Denote

Y = minfX2; � � � ; Xng, and then bP (Y ) is the lowest bid of those n � 1 rival bidders.
Bidder 1 wins the auction whenever his bid � < bP (Y ). The objective function is

E[((1� �)bP (Y )� x) � 1�<bP (Y )] = E[(bP (Y )�
x

1� � ) � 1�<bP (Y )]:

It is clear that � = x
1�� is a weakly dominant strategy.

Proof of Proposition 5:
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Proof: From Theorem 5.3.1 of Arnold et. al (2008), we have the following recurrence

relationship

iE[Xi+1:n] + (n� i)E[Xi:n] = nE[Xi:n�1]:

Therefore,

E[X2:n�1 �X2:n] =
2

n
E[X3:n �X2:n] �

2

n
E[Y3:n � Y2:n] = E[Y2:n�1 � Y2:n];

where the inequality is implied by the result thatE[Xj:n�Xj�1:n] � E[Yj:n�Yj�1:n]. Thus,
we can conclude that n� � n̂�. Similarly, we can also prove the result that n�� � n̂��.

From Proposition 2, it is clear that n�F = n� and n̂�F = n̂�, and then n�F � n̂�F . From

Proposition 4, we have n��F � n̂��F .
Now let us prove that n�P � n̂�P . First, if n�P is the corner solution that n�P = 1, then

n��P � n̂��P is clearly true as n̂��P � 1. Second, if n�P is an interior solution such that the

optimization conditions for n�P are

�� (1� �)�
1� � E[X2:n�1 �X2:n] � �(C(n)� C(n� 1))

and
�� (1� �)�

1� � E[X2:n �X2:n+1] < �(C(n+ 1)� C(n)):

Thus, we can conclude that n�P � n̂�P . Similar results n��P � n̂��P can be implied from the

optimization conditions as in the Proof of Proposition 4.
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